Skip to main content
Log in

Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure evolution and mechanical properties of ultrafine-grained (UFG) Al sheets subjected to accumulative roll bonding (ARB) and subsequent cryorolling was studied. Cryorolling can suppress the dynamic softening of UFG Al sheets subjected to ARB at room temperature. After the third ARB pass, the grains are slightly refined as the number of ARB passes increases. However, the grains are significantly refined further during cryorolling. The grain size of 460 nm achieved after the third ARB pass is reduced to 290 nm after two cryorolling passes with total reduction ratio 80%. Sheets subjected to ARB + cryorolling show improved mechanical properties compared to only ARB-processed sheets due to a change in the fraction of high-angle boundaries and elongated grains. The deformation mechanism for ultrafine grains at room temperature is determined by grain boundary sliding or dislocation-based recovery, while it is governed by dislocation glide at cryogenic temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  2. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317 (1998).

    Article  CAS  Google Scholar 

  3. M. Hockauf and L.W. Meyer: Work-hardening stages of AA1070 and AA6060 after severe plastic deformation. J. Mater. Sci. 45, 4778 (2010).

    Article  CAS  Google Scholar 

  4. E.A. EI-Danaf: Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes. Mater. Sci. Eng., A 487, 189 (2008).

    Article  CAS  Google Scholar 

  5. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  6. Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61, 782 (2013).

    Article  CAS  Google Scholar 

  7. Y. Ito and Z. Horita: Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater. Sci. Eng., A 503, 32 (2009).

    Article  CAS  Google Scholar 

  8. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5, 338 (2003).

    Article  CAS  Google Scholar 

  9. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221 (1998).

    Article  CAS  Google Scholar 

  10. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens: Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng., A 497, 132 (2008).

    Article  CAS  Google Scholar 

  11. H. Azzeddine, K. Tirsatine, T. Baudin, A. Helbert, F. Brisset, and D. Bradai: Texture evolution of an Fe–Ni alloy sheet produced by cross accumulative roll bonding. Mater. Charact. 97, 140 (2014).

    Article  CAS  Google Scholar 

  12. R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris: On the achievement of nanostructured interstitial free steel by four-layer accumulative roll bonding process at room temperature. Metall. Mater. Trans. A 46, 4013 (2015).

    Article  CAS  Google Scholar 

  13. H.L. Yu, C. Lu, K. Tieu, and C. Kong: Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater. Manuf. Process. 29, 448 (2014).

    Article  CAS  Google Scholar 

  14. Q.B. Yu, X.H. Liu, and D.L. Tang: Extreme extensibility of copper foil under compound forming conditions. Sci. Rep. 3, 3556 (2013).

    Article  Google Scholar 

  15. D.L. Tang, X.H. Liu, M. Song, and H.L. Yu: Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling. PLoS One 9, e106637 (2014).

    Article  CAS  Google Scholar 

  16. F.Q. Zou, J.H. Jiang, A.D. Shan, J.M. Fang, and X.Y. Zhang: Shear deformation and grain refinement in pure Al by asymmetric rolling. Trans. Nonferrous Met. Soc. China 18, 774 (2008).

    Article  Google Scholar 

  17. J.K. Lee and D.N. Lee: Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling. Int. J. Mech. Sci. 50, 869 (2008).

    Article  Google Scholar 

  18. J. Marnett, M. Weiss, and P.D. Hodgson: Roll-formablility of cryo-rolled ultrafine aluminium sheet. Mater. Des. 63, 471 (2014).

    Article  CAS  Google Scholar 

  19. S.K. Panigrahi and R. Jayaganthan: A study on the combined treatment of cryorolling, short-annealing, and aging for the development of ultrafine-grained Al 6063 alloy with enhanced strength and ductility. Metall. Mater. Trans. A 41, 2675 (2010).

    Article  CAS  Google Scholar 

  20. P. Trivedi, S. Goel, S. Das, R. Jayaganthan, D. Lahiri, and P. Roy: Biocompatibility of ultrafine grained zircaloy-2 produced by cryorolling for medical applications. Mater. Sci. Eng., C 46, 309 (2015).

    Article  CAS  Google Scholar 

  21. H.L. Yu, K. Tieu, C. Lu, X. Liu, M. Liu, A. Godbole, C. Kong, and Q. Qin: A new insight into ductile fracture of ultrafine-grained Al–Mg alloys. Sci. Rep. 5, 9568 (2015).

    Article  CAS  Google Scholar 

  22. H.L. Yu, K. Tieu, C. Lu, X.H. Liu, A. Godbole, and C. Kong: Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment. Mater. Sci. Eng., A 568, 212 (2013).

    Article  CAS  Google Scholar 

  23. H.L. Yu, C. Lu, K. Tieu, X. Liu, Y. Sun, Q. Yu, and C. Kong: Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Sci. Rep. 2, 772 (2012).

    Article  CAS  Google Scholar 

  24. D. Orlov, Y. Beygeizimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita: Microstructure evolution in pure Al processed with twist extrusion. Mater. Trans. 50, 96 (2009).

    Article  CAS  Google Scholar 

  25. M. Montazeri-Pour, M.H. Parsa, H.R. Jafarian, and S. Taieban: Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing. Mater. Sci. Eng., A 639, 705 (2015).

    Article  CAS  Google Scholar 

  26. K. Edalati and Z. Horita: Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng., A 528, 7514 (2011).

    Article  CAS  Google Scholar 

  27. S. Ranjbar Bahadori, K. Dehghani, and F. Bakhashandeh: Microstructural homogenization of ECAPed copper through post-rolling. Mater. Sci. Eng., A 588, 260 (2013).

    Article  CAS  Google Scholar 

  28. K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, and D.H. Shin: Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing. Scr. Mater. 51, 479 (2004).

    Article  CAS  Google Scholar 

  29. K. Hajizadeh and B. Eghbali: Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium. Metal Mater. Int. 20, 343 (2014).

    Article  CAS  Google Scholar 

  30. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 77, 401 (2014).

    Article  CAS  Google Scholar 

  31. H.L. Yu, C. Lu, K. Tieu, A. Godbole, Y. Sun, M. Liu, L.H. Su, D.L. Tang, and C. Kong: Fabrication of ultrathin nanostructured bimetal foils by accumulative roll bonding and asymmetric rolling. Sci. Rep. 3, 2373 (2013).

    Article  Google Scholar 

  32. H.L. Yu, K. Tieu, C. Lu, and A. Godbole: An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques. Metall. Mater. Trans. A 45, 4038 (2014).

    Article  CAS  Google Scholar 

  33. H.L. Yu, K. Tieu, S. Hadi, C. Lu, A. Godbole, and C. Kong: High strength and ductility of ultrathin laminate foils using accumulative roll bonding and asymmetric rolling. Metall. Mater. Trans. A 46, 869 (2015).

    Article  CAS  Google Scholar 

  34. X. Huang, N. Kamikawa, and N. Hansen: Property optimization of nanostructured ARB-processed Al by post-process deformation. J. Mater. Sci. 43, 7397 (2008).

    Article  CAS  Google Scholar 

  35. D. Meryer: Cryogenic deep rolling—An energy based approach for enhanced cold surface hardening. CIRP Annal. Manuf. Technol. 61, 543 (2012).

    Article  Google Scholar 

  36. H.L. Yu and X.H. Liu: Thermal-mechanical finite element analysis of evolution of surface cracks during slab rolling. Mater. Manuf. Processes 24, 570 (2009).

    Article  CAS  Google Scholar 

  37. Z.C. Sun, L.S. Zhang, and H. Yang: Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation. Mater. Charact. 90, 71 (2014).

    Article  CAS  Google Scholar 

  38. C. Shi, J.L. Lai, and X.G. Chen: Microstructural evolution and dynamic softening mechanisms of Al–Zn–Mg–Cu alloy during hot compressive deformation. Materials 7, 244 (2014).

    Article  CAS  Google Scholar 

  39. J.A. Sharon, H.A. Padilla, and B.L. Boyce: Interpreting the ductility of nanocrystalline metals. J. Mater. Res. 28, 1539 (2013).

    Article  CAS  Google Scholar 

  40. H.L. Yu, K. Tieu, C. Lu, Y.S. Lou, X.Y. Liu, A. Godbole, and C. Kong: Tensile fracture of ultrafine grained aluminum 6061 sheets by asymmetric cryorolling for microforming. Int. J. Damage Mech. 23, 1077 (2014).

    Article  Google Scholar 

  41. C.H. Suh, Y.C. Jung, and Y.S. Kim: Effects of thickness and surface roughness on mechanical properties of aluminum sheets. J. Mech. Sci. Technol. 24, 2091 (2010).

    Article  Google Scholar 

  42. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  43. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006).

    Article  CAS  Google Scholar 

  44. I.A. Ovid’ko and T.G. Langdon: Enhanced ductility of nanocrystalline and ultrafine-grained metals. Rev. Adv. Mater. Sci. 30, 103 (2012).

    Google Scholar 

  45. X.C. Liu, H.W. Zhang, and K. Lu: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2013).

    Article  CAS  Google Scholar 

  46. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Deformation-mechansim map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).

    Article  CAS  Google Scholar 

  47. Y. Ivanisenko, E.D. Tabachnikova, I.A. Psaruk, S.N. Smirnov, A. Kilmametov, A. Kobler, C. Kübel, L. Kurmanaeva, K. Csach, Y. Mishkuf, T. Scherer, Y.A. Semerenko, and H. Hahn: Variation of the deformation mechanisms in a nanocrystalline Pd–10 at.% Au alloy at room and cryogenic temperature. Int. J. Plast. 60, 40 (2014).

    Article  CAS  Google Scholar 

  48. N.P. Gurao and S. Suwas: Deformation mechanisms during large strain deformation of nanocrystalline nickel. Appl. Phys. Lett. 94, 191902 (2009).

    Article  CAS  Google Scholar 

  49. A. Vinogradov: Mechanical properties of ultrafine-grained metals: New challenges and perspectives. Adv. Eng. Mater. 17, 1710 (2015).

    Article  CAS  Google Scholar 

  50. Z.A. Aitken, D. Jang, C.R. Weinberger, and J.R. Greer: Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature. Small 10, 100 (2014).

    Article  CAS  Google Scholar 

  51. H. Ghaffarian, A.K. Taheri, K. Kang, and S. Ryu: Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scr. Mater. 95, 23 (2015).

    Article  CAS  Google Scholar 

  52. N. Chandra and P. Dang: Atomistic simulation of grain boundary sliding and migration. J. Mater. Sci. 34, 655 (1999).

    Article  CAS  Google Scholar 

  53. B.W. Huang, J.X. Shang, Z.H. Liu, and Y. Chen: Atomic simulation of bcc niobium ∑5<001>{310} grain boundary under shear deformation. Acta Mater. 77, 258 (2014).

    Article  CAS  Google Scholar 

  54. K. Cheng, K. Tieu, C. Lu, X. Zheng, and H. Zhu: Molecular dynamics simulation of the grain boundary sliding behaviour for Al ∑5(210). Comp. Mater. Sci. 81, 52 (2014).

    Article  CAS  Google Scholar 

  55. Y. Wang, T. Jiao, and E. Ma: Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation. Mater. Trans. 44, 1926 (2003).

    Article  CAS  Google Scholar 

  56. M. Aramfard and C. Deng: Disclination mediated dynamic recrystallization in metals at low temperature. Sci. Rep. 5, 14215 (2015).

    Article  CAS  Google Scholar 

  57. K.A. Darling, M.A. Tschopp, A.J. Roberts, J.P. Ligda, and L.J. Kecskes: Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures. Scr. Mater. 69, 461 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was funded by URC small grant at the University of Wollongong, and the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing, Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailiang Yu or Huijun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Wang, H., Lu, C. et al. Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling. Journal of Materials Research 31, 797–805 (2016). https://doi.org/10.1557/jmr.2016.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.70

Navigation