Skip to main content
Log in

Annealing optimization for tin–lead eutectic solder by constitutive experiment and simulation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For Sn–Pb eutectic solder alloy, uniaxial tensile tests were conducted to dog-bone type specimens annealed at different temperatures (60–180 °C) and durations (2–48 h). Low strain rates ranging from 10−4 s−1 to 10−3 s−1 were applied to study the competition between creep and plasticity and also the rate dependent effect of annealing condition. It is found that the influence of annealing temperature on material properties is more than that of annealing duration. Higher temperature up to 180 °C generally leads to higher yield and ultimate stresses and ultimate strain of annealed specimens. The optimal annealing condition is suggested to be 180 °C for 6 h for stable and efficient improvements in both strength and ductility. By proposing a concise unified creep and plasticity constitutive model, the sensitivity to strain rate and annealing condition is quantified with consideration of both creep and hardening properties. Parameter calibration theoretically confirms the observed optimal annealing condition in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. M. Osterman: Being “RoHS Exempt” in a Pb-free world. Presented at the Capital SMTA Chapter Pb-free Tutorial Program (Electronic Products and Systems Center, Maryland, 2006).

    Google Scholar 

  2. Directive EU: European Parliament legislative resolution of 24 November 2010 on the proposal for a directive of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment A7–0196/2010 (2010).

  3. I.C. Turner, B.D. Dunn, and C. Barnes: A study into the re-processing of pure tin termination finishes into tin–lead. Soldering Surf. Mt. Tech. 25(4), 218 (2013).

    Article  CAS  Google Scholar 

  4. B.D. Dunn and G. Mozdzen: Tin oxide coverage on tin whisker surfaces, measurements and implications for electronic circuits. Soldering Surf. Mt. Tech. 26(3), 139 (2014).

    Article  CAS  Google Scholar 

  5. ECSS-Q-ST-70–08C: Space Product Assurance: The Manual Soldering of High-reliability Electrical Connections (European Cooperation for Space Standardization, Noordwijk, 2009).

    Google Scholar 

  6. ECSS-Q-ST-70–38C: Space Product Assurance, High-reliability Soldering for Surface-mount and Mixed Technology (European Cooperation for Space Standardization, Noordwijk, 2008).

    Google Scholar 

  7. A. Rusinko: Modeling the effect of DC on the creep of metals in terms of the synthetic theory of irrecoverable deformation. Mech. Mater. 93, 163 (2016).

    Article  Google Scholar 

  8. G. Chen and X. Chen: Fatigue damage coupled constitutive model for 63Sn37Pb solder under proportional and non-proportional loading. Mech. Mater. 39(1), 11 (2007).

    Article  Google Scholar 

  9. M. Mustafa, J.C. Suhling, and P. Lall: Experimental determination of fatigue behavior of lead free solder joints in microelectronic packaging subjected to isothermal aging. Microelectron. Reliab. 56, 136 (2015).

    Article  Google Scholar 

  10. F. Ochoa, J.J. Williams, and N. Chawla: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5 wt% Ag solder. J. Electron. Mater. 32(32), 1414 (2003).

    Article  CAS  Google Scholar 

  11. X. Hu, W. Chen, X. Yu, Y. Li, Y. Liu, and Z. Min: Shear strengths and fracture behaviors of Cu/Sn37Pb/Cu soldered joints subjected to different displacement rates. J. Alloys Compd. 600, 13 (2014).

    Article  CAS  Google Scholar 

  12. K.S. Kim, S.H. Huh, and K. Suganuma: Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater. Sci. Eng., A 333(1–2), 106 (2002).

    Article  Google Scholar 

  13. P. Vianco, J. Rejent, G. Zender, and A. Kilgo: Kinetics of Pb-rich phase particle coarsening in Sn–Pb solder under isothermal annealing–cooling rate dependence. J. Mater. Res. 20(6), 1563 (2005).

    Article  CAS  Google Scholar 

  14. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti: Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu. J. Mater. Res. 17(2), 291 (2002).

    Article  CAS  Google Scholar 

  15. K.I. Ohguchi and K. Kurosawa: An evaluation method for tensile characteristics of Cu/Sn IMCs using miniature composite solder specimen. J. Electron. Mater. 45(6), 3183 (2016).

    Article  CAS  Google Scholar 

  16. C.M. Chuang, T.S. Lui, and L.H. Chen: Effect of lead content on vibration fracture behavior of Pb–Sn eutectic solder. J. Mater. Res. 16(9), 2644 (2001).

    Article  CAS  Google Scholar 

  17. K. Jung and H. Conrad: Microstructure coarsening during static annealing of 60Sn40Pb solder joints: I stereology. J. Electron. Mater. 30(10), 1294 (2001).

    Article  CAS  Google Scholar 

  18. L.N. Ramanathan, J.W. Jang, J.K. Lin, and D.R. Frear: Solid-state annealing behavior of two high-Pb solders, 95Pb5Sn and 90Pb10Sn, on Cu under bump metallurgy. J. Electron. Mater. 34(10), L43 (2005).

    Article  CAS  Google Scholar 

  19. J-W. Jang, A.P. De Silva, J-K. Lin, and D.R. Frear: Tensile fracture behaviors of solid-state-annealed eutectic SnPb and lead-free solder flip chip bumps. J. Mater. Res. 19(6), 1826 (2004).

    Article  CAS  Google Scholar 

  20. Y. Xu, S. Ou, K.N. Tu, K. Zeng, and R. Dunne: Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester. J. Mater. Res. 23(5), 1482 (2008).

    Article  CAS  Google Scholar 

  21. K. Kawashima, T. Ito, and M. Sakuragi: Strain-rate and temperature-dependent stress–strain curves of Sn–Pb eutectic alloy. J. Mater. Sci. 27(23), 6387 (1992).

    Article  CAS  Google Scholar 

  22. H. Nose, M. Sakane, Y. Tsukada, and H. Nishimura: Temperature and strain rate effects on tensile strength and inelastic constitutive relationship of Sn–Pb solders. J. Electron. Packag. 125(1), 59 (2003).

    Article  CAS  Google Scholar 

  23. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki: Comparison of low-melting lead-free solders in tensile properties with Sn–Pb eutectic solder. J. Mater. Sci.: Mater. Electron. 15(4), 219 (2004).

    CAS  Google Scholar 

  24. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki: Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater. Sci. Eng., A 366(1), 50 (2004).

    Article  Google Scholar 

  25. L. Zhang, X. Chen, H. Nose, and M. Sakane: Stress–strain behaviors of 63Sn37Pb solder simulated by anand model. J. Mech. Strength 26(4), 447 (2004).

    CAS  Google Scholar 

  26. X. Chen, D. Jin, M. Sakane, and T. Yamamoto: Multiaxial low-cycle fatigue of 63Sn–37Pb solder. J. Electron. Mater. 34(1), L1 (2005).

    Article  CAS  Google Scholar 

  27. R. Chen and F. Yang: Electrocontact heating in a Sn60Pb40 solder alloy. J. Phys. D: Appl. Phys. 41(41), 3142 (2008).

    Google Scholar 

  28. R. Chen and F. Yang: Impression creep of a Sn60Pb40 alloy: The effect of electric current. J. Phys. D: Appl. Phys. 41(15), 1525 (2008).

    Article  Google Scholar 

  29. F.Z. Xuan, S.S. Shao, and Q.Q. Chen: Synthesis creep behavior of Sn63Pb37 under the applied stress and electric current. Microelectron. Reliab. 51(12), 2336 (2011).

    Article  CAS  Google Scholar 

  30. T. Hurtony, A. Szakál, L. Almásy, A. Len, S. Kugler, A. Bonyár, and P. Gordon: Characterization of the microstructure of tin–silver lead free solder. J. Alloys Compd. 672, 13 (2016).

    Article  CAS  Google Scholar 

  31. W. Yang, L.E. Felton, and R.W. Messler: The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn–Ag/Cu solder joints. J. Electron. Mater. 24(10), 1465 (1995).

    Article  CAS  Google Scholar 

  32. K.M. Kumar, V. Kripesh, and A.A.O. Tay: Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn–Pb solder alloy. J. Alloys Compd. 455(1–2), 148 (2008).

    Article  CAS  Google Scholar 

  33. X. Wang, D. Xu, H. Liu, H. Zhou, Y. Mai, J. Yang, and E. Li: Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test. J. Mater. Sci. 51(1), 334 (2016).

    Article  CAS  Google Scholar 

  34. Annual Book of ASTM Standards: Standard Test Methods for Tension Testing of Metallic Materials (American Association State, Pennsylvania, 2009).

    Google Scholar 

  35. D.L. McDowell, M.P. Miller, and D.C. Brooks: A unified creep-plasticity theory for solder alloys. In Fatigue of Electronic Materials. (ASTM International, Philadelphia, 1994).

    Google Scholar 

  36. Y. Yao, L.M. Keer, and M.E. Fine: Modeling the failure of intermetallic/solder interfaces. Intermetallics 18(8), 1603 (2010).

    Article  Google Scholar 

  37. Y. Yao, H. Xu, L.M. Keer, and M.E. Fine: A continuum damage mechanics-based unified creep and plasticity model for solder materials. Acta Mater. 83, 160 (2015).

    Article  CAS  Google Scholar 

  38. Dassault Systemes Simulia Corp.: ABAQUS 6.14–4 (Hibbitt, Karlsson & Sorensen, Rhode Island, 2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the supports provided by National Natural Science Foundation of China (51508464, 11572249). This work was also partially supported by “the Fundamental Research Funds for the Central Universities” (No. 3102016ZY017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Long or Yao Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Wang, S., He, X. et al. Annealing optimization for tin–lead eutectic solder by constitutive experiment and simulation. Journal of Materials Research 32, 3089–3099 (2017). https://doi.org/10.1557/jmr.2017.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.166

Navigation