Skip to main content
Log in

The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Cu–0.13Cr–0.074Ag (wt%) alloy has been synthesized by the nonvacuum melting and casting followed by thermal-mechanical treatment, and microstructure and mechanical properties have been tailored to make a trade-off between the strength and the electrical conductivity. Results illuminated that the designed alloy has a tensile strength of 473 MPa, a hardness of 140 HV, a yield strength of 446 MPa, an elongation of 10.5%, and an electrical conductivity of 94.5% IACS. Microstructure observations of the samples aged at 480 °C showed that: an fcc structure Cr-phase with a cube-on-cube orientation relationship with the Cu matrix was formed as aged for 15 min, while an ordered bcc structure Cr phase with B2 structure formed as aged for 2 h. The 3DAP results revealed that the Cr was formed to be precipitates and the Ag was formed as solutes distributing evenly in matrix. The high electrical conductivity was ascribed to the Cr element precipitated from the Cu matrix, Ag dissolved in the Cu matrix had little effect on the scattering of Cu electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y.L. Gong, H.S. Kim, S.Y. Ren, S.D. Zeng, and X.K. Zhu: Strain induced hardening and softening behaviors of deformed Cu and Cu–Ge alloys. J. Mater. Res. 31, 599 (2016).

    Article  CAS  Google Scholar 

  2. Y. Zhang, B.H. Tian, A.A. Volinsky, X.H. Chen, H.L. Sun, Z. Chai, P. Liu, and Y. Liu: Dynamic recrystallization model of the Cu–Cr–Zr–Ag alloy under hot deformation. J. Mater. Res. 31, 1275 (2016).

    Article  CAS  Google Scholar 

  3. L.N. Shen, L. Zhou, Q.Y. Dong, X. Zhu, and C. Chen: Microstructure and texture evolution of novel Cu–10Ni–3Al–0.8Si alloy during hot deformation. J. Mater. Res. 31, 1113 (2016).

    Article  CAS  Google Scholar 

  4. P.G. Chen, Q. Shen, G.Q. Luo, C.B. Wang, M.J. Li, and L.M. Zhang: Role of interface tailoring by Cu coating carbon nanotubes to optimize Cu–W composites. J. Mater. Res. 30, 3757 (2015).

    Article  CAS  Google Scholar 

  5. Z. Li, Z.Y. Pan, Y.Y. Zhao, Z. Xiao, and M.P. Wang: Microstructure and properties of high-conductivity, super-high-strength Cu–8.0Ni–1.8Si–0.6Sn–0.15Mg alloy. J. Mater. Res. 24, 2123 (2009).

    Article  CAS  Google Scholar 

  6. M.J. Tenwick and H.A. Davies: Enhanced strength in high conductivity copper alloys. Mater. Sci. Eng., A 98, 543 (1988).

    Article  CAS  Google Scholar 

  7. J. Lee, J.Y. Jung, and E.S. Lee: Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming. Mater. Sci. Eng., A 277, 274 (2000).

    Article  Google Scholar 

  8. S.H. Kim and D.N. Lee: Annealing behavior of alumina dispersion-strengthened copper strips under different conditions. Metall. Mater. Trans. A 33, 1605 (2002).

    Article  Google Scholar 

  9. H.G. Kim, S.Z. Han, K. Euh, and S.H. Lim: Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu–Fe–P alloys. Mater. Sci. Eng., A 530, 652 (2011).

    Article  CAS  Google Scholar 

  10. K.H. Lee and S.I. Hong: Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites. J. Mater. Res. 18, 2194 (2003).

    Article  CAS  Google Scholar 

  11. I.H. Sun: Effect of Nb content on the strength of Cu–Nb filamentary microcomposites. J. Mater. Res. 15, 1889 (2000).

    Article  Google Scholar 

  12. Y. Zhang, A.A. Volinsky, H.T. Tran, and Z. Chai: Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy. Mater. Sci. Eng., A 650, 248 (2016).

    Article  CAS  Google Scholar 

  13. L.M. Peng, X.M. Mao, K.D. Xu, and W.J. Ding: Property and thermal stability of in situ composite Cu–Cr alloy contact cable. J. Mater. Process. Technol. 166, 193 (2005).

    Article  CAS  Google Scholar 

  14. A. Chatterjee, R. Mitra, A.K. Chakraborty, C. Rotti, and K.K. Ray: Comparative study of approaches to assess damage in thermally fatigued Cu–Cr–Zr alloy. J. Nucl. Mater. 474, 120 (2016).

    Article  CAS  Google Scholar 

  15. Z.M. Zhou, J.R. Gao, F. Li, Y.K. Zhang, and Y.P. Wang: On the metastable miscibility gap in liquid Cu–Cr alloys. J. Mater. Sci. 44, 3793 (2009).

    Article  CAS  Google Scholar 

  16. S.G. Mu, F.A. Guo, and Y.Q. Tang: Study on microstructure and properties of aged Cu–Cr–Zr–Mg–RE alloy. Mater. Sci. Eng., A 475, 235 (2008).

    Article  Google Scholar 

  17. Y. Pang, C.D. Xia, M.P. Wang, and Z. Li: Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu–Cr alloy. J. Alloys Compd. 582, 786 (2014).

    Article  CAS  Google Scholar 

  18. A. Chbihi, X. Sauvage, and D. Blavette: Atomic scale investigation of Cr precipitation in copper. Acta Mater. 60, 4575 (2012).

    Article  CAS  Google Scholar 

  19. Q. Liu, X. Zhang, Y. Ge, J. Wang, and J.Z. Cui: Effect of processing and heat treatment on behavior of Cu–Cr–Zr alloys to railway contract wire. Metall. Mater. Trans. A 37, 3233 (2006).

    Article  Google Scholar 

  20. J.H. Su, Q.M. Dong, P. Liu, H.J. Li, and B.X. Kang: Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater. Sci. Eng., A 392, 422 (2005).

    Article  Google Scholar 

  21. S.G. Mu, Y.Q. Tang, F.A. Guo, M.T. Tang, and C.H. Peng: Thermodynamic analysis for non-vacuum melting of Cu–Cr–Zr alloy. Nonferrous Met. 1004, (2007).

  22. R.K. Islamgaliev, V.D. Sitdikov, K.M. Nesterov, and D.L. Pankaratov: Strucutre and crystallographic tecture in the Cu–Cr–Ag alloy subjected to severe plastic deformation. Rev. Adv. Mater. Sci. 39, 61 (2014).

    CAS  Google Scholar 

  23. Y. Sakai and H.J. Scheneider-Muntau: Ultra-high strength, high conductivity Cu–Ag alloy wires. Acta Mater. 45, 1017 (1997).

    Article  CAS  Google Scholar 

  24. I.S. Batra, G.K. Day, U.D. Kulkarni, and S. Banerjee: Microstructure and properties of a Cu–Cr–Zr alloy. J. Nucl. Mater. 299, 91 (2001).

    Article  CAS  Google Scholar 

  25. J.Y. Cheng, B. Shen, and F.X. Yu: Precipitation in a Cu–Cr–Zr–Mg alloy during aging. Mater. Charact. 81, 68 (2013).

    Article  CAS  Google Scholar 

  26. J. Freudenberger, J. Lyubimova, and A. Gaganov: Non-destructive pulsed field CuAg–solenoids. Mater. Sci. Eng., A 527, 2004 (2010).

    Article  Google Scholar 

  27. S.G. Jia, M.S. Zheng, P. Liu, F.Z. Ren, B.H. Tian, G.S. Zhou, and H.F. Lou: Aging properties studies in a Cu–Ag–Cr alloy. Mater. Sci. Eng., A 419, 8 (2006).

    Article  Google Scholar 

  28. Q. Lei, Z. Li, A. Zhu, W.T. Qiu, and S.Q. Liang: The transformation behavior of Cu–8.0Ni–1.8Si–0.6Sn–0.15Mg alloy during isothermal heat treatment. Mater. Charact. 62, 904 (2011).

    Article  CAS  Google Scholar 

  29. M. Mabuchi and K. Higashi: Strengthening mechanism of Mg–Si alloy. Acta Mater. 44, 4611 (1996).

    Article  CAS  Google Scholar 

  30. N. Hansen: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).

    Article  CAS  Google Scholar 

  31. S.C. Wang, Z. Zhu, and M.J. Starink: Estimation of dislocation densities in cold rolled Al–Mg–Cu–Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 217, 174 (2005).

    Article  CAS  Google Scholar 

  32. C.D. Xia, W. Zhang, and Z.Y. Kang: High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling–quenching process and thermomechanical treatments. Mater. Sci. Eng., A 538, 295 (2012).

    Article  CAS  Google Scholar 

  33. Y. Liu, S. Shao, K.M. Liu, X.J. Yang, and D.P. Lu: Microstructure refinement mechanism of Cu–7Cr in situ composites with trace Ag. Mater. Sci. Eng., A 53, 141 (2012).

    Article  Google Scholar 

  34. Q.F. Wang, Y.M. Zhang, X.H. Guo, and K.X. Song: Microstructure and properties of MgO/Cu composite internal oxidation layer prepared on Cu–Mg alloy surface. Mater. Mech. Eng. 58, (2015).

  35. L. Chen, B.W. Zhou, J.N. Han, Y.Y. Xue, F. Jia, and X.G. Zhang: Effects of alloying and deformation on microstructures and properties of Cu–Mg–Te–Y alloys. Trans. Nonferrous Met. Soc. China 23, 3697 (2013).

    Article  CAS  Google Scholar 

  36. H.J. Zhi, Y.S. Xu, M.S. Lu, and L.F. Zheng: Forming technology of Cu–Sn alloy contact wire for high-speed electric railway. Foundry Technol. 1591 (2009).

  37. Q.Y. Dong, L.N. Shen, F. Cao, Y.L. Jia, K.L. Liao, and M.P. Wang: Effect of thermomechanical processing on the microstructure and properties of a Cu–Fe–P alloy. J. Mater. Eng. Perform. 1531 (2015).

  38. D. Shangina, Y. Maksimenkova, N. Bochvar, and V. Serebryany: Influence of alloying with hafnium on the microstructure, texture, and properties of Cu–Cr alloy after equal channel angular pressing. J. Mater. Sci. 51, 5493 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is financially supported by the National Key Technology K&D Program (2014BAC03B08) and the National Key Research and Development Program of China (2016YFB0301300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Li or Qian Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Z., Jiang, Y. et al. The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment. Journal of Materials Research 32, 1324–1332 (2017). https://doi.org/10.1557/jmr.2017.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.17

Navigation