Skip to main content

Advertisement

Log in

Graphene based biosensors for healthcare

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene due to its unique physicochemical properties mainly its large surface to volume ratio, excellent thermal and electrical conductivity, biocompatibility, as well as broad electrochemical potential, has received considerable attention for biosensing applications. In this review paper, we provide a comprehensive overview of the recent advances in the field of electrochemical biosensors developed using the graphene nanomaterial including graphene oxide, reduced graphene oxide, CVD graphene, and various graphene based nanostructures including nanomesh, nanowalls, etc. in healthcare related applications. The review focusses on material synthesis, device fabrication, and biofunctionalization of graphene electrodes in biosensing such as those based on electrochemical impedance, amperometry/voltammetry, potentiometry, conductometry, and field effect transistor. Additionally, several ingenious biosensing strategies of graphene biosensor in clinical diagnosis for detection of proteins (disease biomarkers), nucleic acids (mutation analysis in genetic diseases), small molecules (disease metabolites like glucose, lactic acid etc.), and pathogens (bacterial and viral infections) have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.
FIG. 20.
FIG. 21.
FIG. 22.

Similar content being viewed by others

References

  1. E. Fitzer, K.H. Kochling, H.P. Boehm, and H. Marsh: Recommended terminology for the description of carbon as a solid—(iupac recommendations 1995). Pure Appl. Chem. 67, 473 (1995).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  3. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).

    Article  CAS  Google Scholar 

  4. A.J. Vanbommel, J.E. Crombeen, and A. Vantooren: Leed and auger-electron observations of SIC (0001) surface. Surf. Sci. 48, 463 (1975).

    Article  Google Scholar 

  5. W.A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 16900 (2011).

    Article  Google Scholar 

  6. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006).

    Article  CAS  Google Scholar 

  7. J. Hass, W.A. de Heer, and E.H. Conrad: The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008).

    Google Scholar 

  8. P.N. First, W.A. de Heer, T. Seyller, C. Berger, J.A. Stroscio, and J.-S. Moon: Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296 (2010).

    Article  CAS  Google Scholar 

  9. R. Zan, Q.M. Ramasse, R. Jalil, and U. Bangert: Atomic structure of graphene and h-BN layers and their interactions with metals. In Adv. Graphene Sci. (INTECH, 2013).

  10. H. Bai, C. Li, and G. Shi: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089 (2011).

    Article  CAS  Google Scholar 

  11. P. Marques, G. Gonçalves, S. Cruz, N. Almeida, M. Singh, J. Grácio, and A. Sousa: Functionalized graphene nanocomposites. In Adv. Nanocomposite Tech., A. Hashim, ed. (INTECH, 2011).

  12. P.W. Sutter, J-I. Flege, and E.A. Sutter: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008).

    Article  CAS  Google Scholar 

  13. A. Kumar, and C. H. Lee: Synthesis and Biomedical Applications of Graphene: Present and Future Trends. In Adv. Graphene Sci., M. Aliofkhazraei, ed. (INTECH, 2013).

  14. M. Losurdo, M.M. Giangregorio, P. Capezzuto, and G. Bruno: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).

    Article  CAS  Google Scholar 

  15. H.L. Zhou, W.J. Yu, L.X. Liu, R. Cheng, Y. Chen, X.Q. Huang, Y. Liu, Y. Wang, Y. Huang, and X.F. Duan: Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).

    Article  CAS  Google Scholar 

  16. L. Huang, Q.H. Chang, G.L. Guo, Y. Liu, Y.Q. Xie, T. Wang, B. Ling, and H.F. Yang: Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon 50, 551–556 (2012).

    Article  CAS  Google Scholar 

  17. Y. Zhang, M. Ma, J. Yang, W. Huang, and X. Dong: Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Adv. 4, 8466 (2014).

    Article  CAS  Google Scholar 

  18. S.Y. Yang, J.G. Oh, D.Y. Jung, H. Choi, C.H. Yu, J. Shin, C.-G. Choi, B.J. Cho, and S.-Y. Choi: Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 11, 175 (2015).

    Article  CAS  Google Scholar 

  19. W. Regan, N. Alem, B. Aleman, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl: A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102 (2010).

    Article  CAS  Google Scholar 

  20. A.V. Zaretski, H. Moetazedi, C. Kong, E.J. Sawyer, S. Savagatrup, E. Valle, T.F. O’Connor, A.D. Printz, and D.J. Lipomi: Metal-assisted exfoliation (MAE): Green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology 26, 045301 (2015).

    Article  CAS  Google Scholar 

  21. D.A.C. Brownson, D.K. Kampouris, and C.E. Banks: Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944 (2012).

    Article  CAS  Google Scholar 

  22. S. Badhulika, T. Terse-Thakoor, C.M. Chaves Villarreal, and A. Mulchandani: Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells. Front. Chem. 3, 38 (2015).

    Article  CAS  Google Scholar 

  23. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Raeder, and K. Muellen: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4216 (2008).

    Article  CAS  Google Scholar 

  24. M.Y. Han, B. Oezyilmaz, Y. Zhang, and P. Kim: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  25. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Muellen, and R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  26. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872 (2009).

    Article  CAS  Google Scholar 

  27. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009).

    Article  CAS  Google Scholar 

  28. D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, and K. Banerjee: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992 (2014).

    Article  CAS  Google Scholar 

  29. L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai: Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321 (2010).

    Article  CAS  Google Scholar 

  30. X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai: Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 6, 563 (2011).

    Article  CAS  Google Scholar 

  31. D.B. Shinde, J. Debgupta, A. Kushwaha, M. Aslam, and V.K. Pillai: Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 133, 4168 (2011).

    Article  CAS  Google Scholar 

  32. Y.H. Wu, P.W. Qiao, T.C. Chong, and Z.X. Shen: Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64 (2002).

    Article  CAS  Google Scholar 

  33. S. Suzuki, A. Chatterjee, C-L. Cheng, and M. Yoshimura: Effect of hydrogen on carbon nanowall growth by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 50, 01AF08 (2011).

    Article  Google Scholar 

  34. K. Tanaka, M. Yoshimura, A. Okamoto, and K. Ueda: Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys., Part 1 44, 2074 (2005).

    Article  CAS  Google Scholar 

  35. N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, and H. Marchetto: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506 (2008).

    Article  CAS  Google Scholar 

  36. K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D.A. Kovalenko, M.H. Ruemmeli, J. Opitz, G. Cuniberti, J.-S. Lee, and M. Meyyappan: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).

    Article  CAS  Google Scholar 

  37. H.G. Jain, H. Karacuban, D. Krix, H.-W. Becker, H. Nienhaus, and V. Buck: Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon 49, 4987 (2011).

    Article  CAS  Google Scholar 

  38. S. Kondo, M. Hori, K. Yamakawa, S. Den, H. Kano, and M. Hiramatsu: Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol., A 26, 1294 (2008).

    Article  CAS  Google Scholar 

  39. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).

    Article  CAS  Google Scholar 

  40. S.Y. Kim, Y.H. Joung, and W.S. Choi: Growth properties of carbon nanowalls on glass substrates by a microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 53, 05FD09 (2014).

    Article  Google Scholar 

  41. J. Fang, I. Levchenko, S. Kumar, D. Seo, and K. Ostrikov: Vertically-aligned graphene flakes on nanoporous templates: Morphology, thickness, and defect level control by pre-treatment. Sci. Technol. Adv. Mater. 15, 055009 (2014).

    Article  CAS  Google Scholar 

  42. P. Kumar Roy, A. Ganguly, W.-H. Yang, C.-T. Wu, J.-S. Hwang, Y. Tai, K.-H. Chen, L.-C. Chen, and S. Chattopadhyay: Edge promoted ultrasensitive electrochemical detection of organic bio-molecules on epitaxial graphene nanowalls. Biosens. Bioelectron. 70, 137 (2015).

    Article  CAS  Google Scholar 

  43. O. Akhavan, E. Ghaderi, and R. Rahighi: Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6, 2904 (2012).

    Article  CAS  Google Scholar 

  44. O. Akhavan, E. Ghaderi, E. Hashemi, and R. Rahighi: Ultra-sensitive detection of leukemia by graphene. Nanoscale 6, 14810 (2014).

    Article  CAS  Google Scholar 

  45. T. Yang, Q. Guan, L. Meng, R. Yang, Q. Li, and K. Jiao: A simple preparation method for large-area, wavy graphene oxide nanowalls and their application to freely switchable impedimetric DNA detection. RSC Adv. 3, 22430 (2013).

    Article  CAS  Google Scholar 

  46. X. Dong, Q. Long, J. Wang, M.B. Chan-Park, Y. Huang, W. Huang, and P. Chen: A graphene nanoribbon network and its biosensing application. Nanoscale 3, 5156 (2011).

    Article  CAS  Google Scholar 

  47. Y. Hu, F. Li, X. Bai, D. Li, S. Hua, K. Wang, and L. Niu: Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem. Commun. 47, 1743 (2011).

    Article  CAS  Google Scholar 

  48. Y. Hu, F. Li, D. Han, T. Wu, Q. Zhang, L. Niu, and Y. Bao: Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide. Anal. Chim. Acta 753, 82 (2012).

    Article  CAS  Google Scholar 

  49. A. Singh, G. Sinsinbar, M. Choudhary, V. Kumar, R. Pasricha, H.N. Verma, S.P. Singh, and K. Arora: Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators, B 185, 675 (2013).

    Article  CAS  Google Scholar 

  50. Y. Qiu, X. Qu, J. Dong, S. Ai, and R. Han: Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J. Hazard. Mater. 190, 480 (2011).

    Article  CAS  Google Scholar 

  51. M. Giovanni, A. Bonanni, and M. Pumera: Detection of DNA hybridization on chemically modified graphene platforms. Analyst 137, 580 (2012).

    Article  CAS  Google Scholar 

  52. A-M.J. Haque, H. Park, D. Sung, S. Jon, S.-Y. Choi, and K. Kim: An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal. Chem. 84, 1871 (2012).

    Article  CAS  Google Scholar 

  53. T.N. Truong: Development of label-free impedimetric Hcg-immunosensor using screen-printed electrode. J. Biosens. Bioelectron. 2(3), 1000107 (2011).

    Google Scholar 

  54. D-J. Kim, I.Y. Sohn, J.-H. Jung, O.J. Yoon, N.E. Lee, and J.-S. Park: Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 41, 621 (2013).

    Article  CAS  Google Scholar 

  55. Y.Z. Zhang, T. Liu, B. Meng, X.H. Li, G.Z. Liang, X.N. Hu, and Q.J. Wang: Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    Article  CAS  Google Scholar 

  56. X. Dong, Y. Shi, W. Huang, P. Chen, and L-J. Li: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649 (2010).

    Article  CAS  Google Scholar 

  57. C-T. Lin, L. Phan Thi Kim, T.-Y. Chen, K.-K. Liu, C.-H. Chen, K.-H. Wei, and L.-J. Li: Label-free electrical detection of DNA hybridization on graphene using Hall effect measurements: Revisiting the sensing mechanism. Adv. Funct. Mater. 23, 2301 (2013).

    Article  CAS  Google Scholar 

  58. Q. Gong, H. Yang, Y. Dong, and W. Zhang: A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Anal. Methods 7, 2554 (2015).

    Article  CAS  Google Scholar 

  59. L. Feng, Y. Chen, J. Ren, and X. Qu: A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930 (2011).

    Article  CAS  Google Scholar 

  60. Y. Huang, X. Dong, Y. Liu, L-J. Li, and P. Chen: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21, 12358 (2011).

    Article  CAS  Google Scholar 

  61. J.C. Liao, M. Mastali, Y. Li, V. Gau, M.A. Suchard, J. Babbitt, J. Gornbein, E.M. Landaw, E.R.B. McCabe, B.M. Churchill, and D.A. Haake: Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9, 158 (2007).

    Article  CAS  Google Scholar 

  62. F. Lucarelli, G. Marrazza, A.P.F. Turner, and M. Mascini: Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19, 515 (2004).

    Article  CAS  Google Scholar 

  63. J.C. Liao, M. Mastali, V. Gau, M.A. Suchard, A.K. Moller, D.A. Bruckner, J.T. Babbitt, Y. Li, J. Gornbein, E.M. Landaw, E.R.B. McCabe, B.M. Churchill, and D.A. Haake: Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J. Clin. Microbiol. 44, 561 (2006).

    Article  CAS  Google Scholar 

  64. T.G. Drummond, M.G. Hill, and J.K. Barton: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192 (2003).

    Article  CAS  Google Scholar 

  65. S.C.B. Oliveira and A.M. Oliveira-Brett: DNA-electrochemical biosensors: AFM surface characterisation and application to detection of in situ oxidative damage to DNA. Comb. Chem. High Throughput Screening 13, 628 (2010).

    Article  CAS  Google Scholar 

  66. E. Palecek, M. Fojta, M. Tomschik, and J. Wang: Electrochemical biosensors for DNA hybridization and DNA damage. Biosens. Bioelectron. 13, 621 (1998).

    Article  CAS  Google Scholar 

  67. J. Wang: From DNA biosensors to gene chips. Nucleic Acids Res. 28, 3011 (2000).

    Article  CAS  Google Scholar 

  68. S. Akca, A. Foroughi, D. Frochtzwajg, and H.W.C. Postma: Competing interactions in DNA assembly on graphene. PLoS One 6(4), e18442 (2011).

    Article  CAS  Google Scholar 

  69. A. Bonanni and M. Pumera: Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356 (2011).

    Article  CAS  Google Scholar 

  70. B. Esteban-Fernandez de Avila, E. Araque, S. Campuzano, M. Pedrero, B. Dalkiran, R. Barderas, R. Villalonga, E. Kilic, and J.M. Pingarron: Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal. Chem. 87, 2290 (2015).

    Article  CAS  Google Scholar 

  71. C.X. Lim, H.Y. Hoh, P.K. Ang, and K.P. Loh: Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Anal. Chem. 82, 7387 (2010).

    Article  CAS  Google Scholar 

  72. N. Mohanty and V. Berry: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469 (2008).

    Article  CAS  Google Scholar 

  73. Z. Wang, J. Zhang, P. Chen, X. Zhou, Y. Yang, S. Wu, L. Niu, Y. Han, L. Wang, F. Boey, Q. Zhang, B. Liedberg, and H. Zhang: Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens. Bioelectron. 26, 3881 (2011).

    Article  CAS  Google Scholar 

  74. Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, and L. Niu: Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33, 1097 (2012).

    Article  CAS  Google Scholar 

  75. L-P. Jia, J-F. Liu, and H-S. Wang: Electrochemical performance and detection of 8-hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens. Bioelectron. 67, 139 (2015).

    Article  CAS  Google Scholar 

  76. M. Du, T. Yang, X. Li, and K. Jiao: Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88, 439 (2012).

    Article  CAS  Google Scholar 

  77. B. Li, G. Pan, N.D. Avent, R.B. Lowry, T.E. Madgett, and P.L. Waines: Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens. Bioelectron. 72, 313 (2015).

    Article  CAS  Google Scholar 

  78. A. Benvidi, N. Rajabzadeh, M. Mazloum-Ardakani, M.M. Heidari, and A. Mulchandani: Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens. Bioelectron. 58, 145 (2014).

    Article  CAS  Google Scholar 

  79. O. Akhavan, E. Ghaderi, R. Rahighi, and M. Abdolahad: Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 79, 654 (2014).

    Article  CAS  Google Scholar 

  80. Q.J. Gong, Y.D. Wang, and H.Y. Yang: A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 89, 565 (2017).

    Article  CAS  Google Scholar 

  81. A. Seidel, S. Brunner, P. Seidel, G.I. Fritz, and O. Herbarth: Modified nucleosides: An accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br. J. Cancer 94, 1726 (2006).

    Article  CAS  Google Scholar 

  82. E. Borek, O.K. Sharma, F.L. Buschman, D.L. Cohn, K.A. Penley, F.N. Judson, B.S. Dobozin, C.R. Horsburgh, and C.H. Kirkpatrick: Altered excretion of modified nucleosides and beta-aminoisobutyric acid in subjects with acquired-immunodeficiency-syndrome or at risk for acquired-immunodeficiency-syndrome. Cancer Res. 46, 2557 (1986).

    CAS  Google Scholar 

  83. K-J. Huang, D.-J. Niu, J.-Y. Sun, C.-H. Han, Z.-W. Wu, Y.-L. Li, and X.-Q. Xiong: Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf., B 82, 543 (2011).

    Article  CAS  Google Scholar 

  84. Y. Xie, A. Chen, D. Du, and Y. Lin: Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta 699, 44 (2011).

    Article  CAS  Google Scholar 

  85. D. Du, L. Wang, Y. Shao, J. Wang, M.H. Engelhard, and Y. Lin: Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal. Chem. 83, 746 (2011).

    Article  CAS  Google Scholar 

  86. X. Chen, X. Jia, J. Han, J. Ma, and Z. Ma: Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens. Bioelectron. 50, 356 (2013).

    Article  CAS  Google Scholar 

  87. S.K. Tuteja, M. Kukkar, C.R. Suri, A.K. Paul, and A. Deep: One step in situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. Biosens. Bioelectron. 66, 129 (2015).

    Article  CAS  Google Scholar 

  88. G. Yuan, C. Yu, C. Xia, L. Gao, W. Xu, W. Li, and J. He: A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels. Biosens. Bioelectron. 72, 237 (2015).

    Article  CAS  Google Scholar 

  89. J. Liu, J. Wang, T. Wang, D. Li, F. Xi, J. Wang, and E. Wang: Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens. Bioelectron. 65, 281 (2015).

    Article  CAS  Google Scholar 

  90. P. Li, B. Zhang, and T. Cui: Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 72, 168 (2015).

    Article  CAS  Google Scholar 

  91. S. Singal, A.K. Srivastava, A.M. Biradar, A. Mulchandani, and A. Rajesh: Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sens. Actuators, B 205, 363 (2014).

    Article  CAS  Google Scholar 

  92. S. Singal, A.M. Biradar, A. Mulchandani, and A. Rajesh: Ultrasensitive electrochemical immunosensor based on Pt nanoparticle–graphene composite. Appl. Biochem. Biotechnol. 174, 971 (2014).

    Article  CAS  Google Scholar 

  93. F. Ahour and M.K. Ahsani: An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens. Bioelectron. 86, 764 (2016).

    Article  CAS  Google Scholar 

  94. L. Zhou, H.J. Mao, C.Y. Wu, L. Tang, Z.H. Wu, H. Sun, H.L. Zhang, H.B. Zhou, C.P. Jia, Q.H. Jin, X.F. Chen, and J.L. Zhao: Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens. Bioelectron. 87, 701 (2017).

    Article  CAS  Google Scholar 

  95. W. Saleem, C. Salinas, B. Watkins, G. Garvey, A.C. Sharma, and R. Ghosh: Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy. Biosens. Bioelectron. 86, 522 (2016).

    Article  CAS  Google Scholar 

  96. M. Harris: Classification and diagnosis of diabetes-mellitus and other categories of glucose-intolerance. Diabetes 28, 1039 (1979).

    Article  Google Scholar 

  97. R. Mohandas and R.J. Johnson: Uric acid levels increase risk for new-onset kidney disease. J. Am. Soc. Nephrol. 19, 2251 (2008).

    Article  Google Scholar 

  98. R.M. Wightman, L.J. May, and A.C. Michael: Detection of dopamine dynamics in the brain. Anal. Chem. 60, A769 (1988).

    Article  Google Scholar 

  99. P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, and C. Cai: Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 55, 8606 (2010).

    Article  CAS  Google Scholar 

  100. K. Xinhuang, W. Jun, W. Hong, I.A. Aksay, L. Jun, and L. Yuehe: Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901 (2009).

    Article  CAS  Google Scholar 

  101. Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, and X.-M. Song: Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. J. Biosens. Bioelectron. 26, 2632 (2011).

    Article  CAS  Google Scholar 

  102. C. Fu, W. Yang, X. Chen, and D.G. Evans: Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode. Electrochem. Commun. 11, 997 (2009).

    Article  CAS  Google Scholar 

  103. S. Alwarappan, S.R. Singh, S. Pillai, A. Kumar, and S. Mohapatra: Direct electrochemistry of glucose oxidase at a gold electrode modified with graphene nanosheets. Anal. Lett. 45, 746 (2012).

    Article  CAS  Google Scholar 

  104. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu: Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378 (2009).

    Article  CAS  Google Scholar 

  105. B. Unnikrishnan, S. Palanisamy, and S-M. Chen: A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39, 70 (2013).

    Article  CAS  Google Scholar 

  106. Y. Xueqiu and J.J. Pak: Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators, B 202, 1357 (2014).

    Article  CAS  Google Scholar 

  107. Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon, S.-S. Ahn, J.-W. Yang, W.S. Yang, and S. Seo: Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82 (2012).

    Article  CAS  Google Scholar 

  108. H. Lian, Z. Sun, X. Sun, and B. Liu: Graphene doped molecularly imprinted electrochemical sensor for uric acid. Anal. Lett. 45, 2717 (2012).

    Article  CAS  Google Scholar 

  109. Y-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, and H. Kim: Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25, 2366 (2010).

    Article  CAS  Google Scholar 

  110. M. Mallesha, R. Manjunatha, C. Nethravathi, G.S. Suresh, M. Rajamathi, J.S. Melo, and T.V. Venkatesha: Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry 81, 104 (2011).

    Article  CAS  Google Scholar 

  111. Y. Yu, Z. Chen, B. Zhang, X. Li, and J. Pan: Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode. Talanta 112, 31 (2013).

    Article  CAS  Google Scholar 

  112. Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889 (2009).

    Article  CAS  Google Scholar 

  113. X. Zhu, Q. Liu, X. Zhu, C. Li, M. Xu, and Y. Liang: Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid. Int. J. Electrochem. Sci. 7, 5172 (2012).

    CAS  Google Scholar 

  114. M. Chao, X. Ma, and X. Li: Graphene-modified electrode for the selective determination of uric acid under coexistence of dopamine and ascorbic acid. Int. J. Electrochem. Sci. 7, 2201 (2012).

    CAS  Google Scholar 

  115. J.W. Heinecke: Oxidative stress: New approaches to diagnosis and prognosis in atherosclerosis. Am. J. Cardiol. 91, 12A (2003).

    Article  CAS  Google Scholar 

  116. V. Sosa, T. Moline, R. Somoza, R. Paciucci, H. Kondoh, and M.E. Lleonart: Oxidative stress and cancer: An overview. Ageing Res. Rev. 12, 376 (2013).

    Article  CAS  Google Scholar 

  117. R.K. Sharma, F.F. Pasqualotto, D.R. Nelson, A.J. Thomas, and A. Agarwal: The reactive oxygen species—Total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum. Reprod. 14, 2801 (1999).

    Article  CAS  Google Scholar 

  118. H. Xu, H. Dai, and G. Chen: Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81, 334 (2010).

    Article  CAS  Google Scholar 

  119. Y. Zhou, S. Liu, H-J. Jiang, H. Yang, and H-Y. Chen: Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan–graphene nanocomposite. Electroanalysis 22, 1323 (2010).

    Article  CAS  Google Scholar 

  120. Q. Lu, X. Dong, L-J. Li, and X. Hu: Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82, 1344 (2010).

    Article  CAS  Google Scholar 

  121. K. Komori, T. Terse-Thakoor, and A. Mulchandani: Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing. ACS Appl. Mater. Interfaces 7, 3647 (2015).

    Article  CAS  Google Scholar 

  122. J. Wei, J. Qiu, L. Li, L. Ren, X. Zhang, J. Chaudhuri, and S. Wang: A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Nanotechnology 23(33), 335707 (2012).

    Article  CAS  Google Scholar 

  123. F. Valentini, D. Romanazzo, M. Carbone, and G. Palleschi: Modified screen-printed electrodes based on oxidized graphene nanoribbons for the selective electrochemical detection of several molecules. Electroanalysis 24, 872 (2012).

    Article  CAS  Google Scholar 

  124. Q. Zhang, Y. Qiao, L. Zhang, S. Wu, H. Zhou, J. Xu, and X.-M. Song: Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on water soluble sulfonated graphene film via self-assembly. Electroanalysis 23, 900 (2011).

    Article  CAS  Google Scholar 

  125. R. Manjunatha, G.S. Suresh, J.S. Melo, S.F. D’Souza, and T.V. Venkatesha: An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 99, 302 (2012).

    Article  CAS  Google Scholar 

  126. T. Balamurugan and S. Berchmans: Non-enzymatic detection of bilirubin based on a graphene–polystyrene sulfonate composite. RSC Adv. 5, 50470 (2015).

    Article  CAS  Google Scholar 

  127. Y-L. Wang and G-C. Zhao: Electrochemical sensing of nitric oxide on electrochemically reduced graphene-modified electrode. Int. J. Electrochem. 2011, 482780 (2011).

    Google Scholar 

  128. D.D. Tu, Y. He, Y.Z. Rong, Y. Wang, and G. Li: Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene. Meas. Sci. Technol. 27, 045108 (2016).

    Article  CAS  Google Scholar 

  129. K. Vijayaraj, S.W. Hong, S.H. Jin, S.C. Chang, and D.S. Park: Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal. Methods 8, 6974 (2016).

    Article  CAS  Google Scholar 

  130. F. Liu, K.S. Choi, T.J. Park, S.Y. Lee, and T.S. Seo: Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 5, 123 (2011).

    Article  CAS  Google Scholar 

  131. F. Liu, Y.H. Kim, D.S. Cheon, and T.S. Seo: Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens. Actuators, B 186, 252 (2013).

    Article  CAS  Google Scholar 

  132. Q. Wang, J. Su, J. Xu, Y. Xiang, R. Yuan, and Y. Chai: Dual amplified, sensitive electrochemical detection of pathogenic sequences based on biobarcode labels and functional graphene modified electrode. Sens. Actuators, B 163, 267 (2012).

    Article  CAS  Google Scholar 

  133. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. McAlpine: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  134. C-Y. Chan, J. Guo, C. Sun, M.-K. Tsang, F. Tian, J. Hao, S. Chen, and M. Yang: A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sens. Actuators, B 220, 131 (2015).

    Article  CAS  Google Scholar 

  135. Y. Wan, Z. Lin, D. Zhang, Y. Wang, and B. Hou: Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron. 26, 1959 (2011).

    Article  CAS  Google Scholar 

  136. L.C. Xiang, Z. Wang, Z.H. Liu, S.N.E. Weigum, Q.K. Yu, and M.Y. Chen: Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 16, 8359 (2016).

    CAS  Google Scholar 

  137. S. Karapetis, G.P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, N. Tzamtzis, and N. Psaroudakis: Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis 28, 1584 (2016).

    Article  CAS  Google Scholar 

  138. J. Basu and C. RoyChaudhuri: Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Lett. 37, 492 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

We acknowledge the financial support of the National Science Foundation (1307671), U.S. Department of Agriculture (2014-67021-21589), and W. Ruel Johnson Chair in Environmental Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trupti Terse-Thakoor or Ashok Mulchandani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terse-Thakoor, T., Badhulika, S. & Mulchandani, A. Graphene based biosensors for healthcare. Journal of Materials Research 32, 2905–2929 (2017). https://doi.org/10.1557/jmr.2017.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.175

Navigation