Skip to main content
Log in

High-temperature thermoelectric characterization of filled strontium barium niobates: power factors and carrier concentrations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermoelectric properties of oxygen-deficient filled strontium barium niobates (SBN, SrxBa6−xNb10O30−δ) in the composition range from the barium end member to a Sr:Ba ratio of 80:20 were investigated. The electrical conductivity, Seebeck coefficients, and power factors for ceramic samples annealed at 1300–1310 °C for 30 h under forming gas (∼10−16 pO2 atm) were evaluated from ∼350 to 970 K. The conduction mechanism in the filled SBNs was found to be similar to that of the heavily-reduced unfilled SBNs reported in literature. However, relative to the unfilled counterparts heat-treated at 10−16 atm pO2, larger power factors were observed in the filled SBNs. The thermoelectric performance of these filled SBNs was composition-sensitive; lower Sr contents showed higher electrical conductivities, and power factors. Electron diffraction and Hall experiments suggest that both mobility and carrier concentration are enhanced with decreasing Sr. For ceramic samples, the highest power factors achievable were found for low Sr, heavily-reduced filled compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson: Material and manufacturing cost considerations for thermoelectrics. Renewable Sustainable Energy Rev. 32, 313 (2014).

    Article  CAS  Google Scholar 

  2. S.B. Riffat and X. Ma: Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23(8), 913 (2003).

    Article  Google Scholar 

  3. R.U. Ayres and L. Ayres: A Handbook of Industrial Ecology (Edward Elgar Publishing, Northhampton, MA, 2002).

    Book  Google Scholar 

  4. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J. Fleurial: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19(15), 2445 (2009).

    Article  CAS  Google Scholar 

  5. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh: Transition metal oxides—Thermoelectric properties. Prog. Mater. Sci. 58(8), 1443 (2013).

    Article  CAS  Google Scholar 

  6. S. Lee, J.A. Bock, S. Trolier-McKinstry, and C.A. Randall: Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 32(16), 3971 (2012).

    Article  CAS  Google Scholar 

  7. X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, and I.M. Reaney: A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem. Mater. 27(9), 3250 (2015).

    Article  CAS  Google Scholar 

  8. S. Lee, R.H.T. Wilke, S. Trolier-McKinstry, S. Zhang, and C.A. Randall: SrxBa1−xNb2O6−δ ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96(3), 31910 (2010).

    Article  Google Scholar 

  9. J.A. Bock, S. Trolier-McKinstry, G.D. Mahan, and C.A. Randall: Polarization-based perturbations to thermopower and electronic conductivity in highly conductive tungsten bronze structured (Sr,Ba)Nb2O6: Relaxors vs normal ferroelectrics. Phys. Rev. B: Condens. Matter Mater. Phys. 90(11), 115106 (2014).

    Article  Google Scholar 

  10. R.F. Janninck and D.H. Whitmore: Electrical conductivity and thermoelectric power of niobium dioxide. J. Phys. Chem. Solids 27(6–7), 1183 (1966).

    Article  CAS  Google Scholar 

  11. J.A. Bock, J.H. Chan, Y. Tsur, S. Trolier-McKinstry, and C.A. Randall: The effects of low oxygen activity conditions on the phase equilibria and cation occupancy of strontium barium niobate. J. Am. Ceram. Soc. 99(10), 3435 (2016).

    Article  CAS  Google Scholar 

  12. J.H. Chan, J.A. Bock, H. Guo, S. Trolier-McKinstry, and C.A. Randall: Filled oxygen-deficient strontium barium niobates. J. Am. Ceram. Soc. (2016), doi: https://doi.org/10.1111/jace.14598.

  13. T. Kolodiazhnyi, H. Sakurai, O. Vasylkiv, H. Borodianska, and Y. Mozharivskyj: Abnormal thermal conductivity in tetragonal tungsten bronze Ba6−xSrxNb10O30. Appl. Phys. Lett. 104(11), 111903 (2014).

    Article  Google Scholar 

  14. T. Kolodiazhnyi, H. Sakurai, M. Isobe, Y. Matsushita, S. Forbes, Y. Mozharivskyj, T.J.S. Munsie, G.M. Luke, M. Gurak, and D.R. Clarke: Superconductivity and crystal structural origins of the metal-insulator transition in Ba6−xSrxNb10O30 tetragonal tungsten bronzes. Phys. Rev. B: Condens. Matter Mater. Phys. 92(21), 214508 (2015).

    Article  Google Scholar 

  15. Y. Li, J. Liu, Y. Hou, Y. Zhang, Y. Zhou, W. Su, Y. Zhu, J. Li, and C. Wang: Thermal conductivity and thermoelectric performance of SrxBa1−xNb2O6 ceramics at high temperatures. Scr. Mater. 109, 80 (2015).

    Article  CAS  Google Scholar 

  16. S. Jandl, K.D. Usadel, and G. Fischer: Resistivity measurements with samples in the form of a double cross. Rev. Sci. Instrum. 45(11), 1479 (1974).

    Article  Google Scholar 

  17. R.J. Cava, W.F. Peck, Jr, J.J. Krajewski, and D.A. Fleming: Compensation of the temperature coefficient of the dielectric constant of barium strontium titanate. Appl. Phys. Lett. 67(25), 3813 (1995).

    Article  CAS  Google Scholar 

  18. F. Kupka and M.J. Sienko: The magnetic susceptibility of tungsten bronzes. J. Chem. Phys. 18(9), 1296 (1950).

    Article  CAS  Google Scholar 

  19. M.J. Sienko and S. Macenness Morehouse: Electrical and magnetic properties of potassium tungsten bronze and rubidium tungsten bronze. Inorg. Chem. 2(3), 485 (1963).

    Article  CAS  Google Scholar 

  20. W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, 8th ed. (John Wiley & Sons, Hoboken, 2009).

    Google Scholar 

  21. C.S. Dandeneau, T.W. Bodick, R.K. Bordia, and F.S. Ohuchi: Thermoelectric properties of reduced polycrystalline Sr0.5Ba0.5Nb2O6 fabricated via solution combustion synthesis. J. Am. Ceram. Soc. 96(7), 2230 (2013).

    Article  CAS  Google Scholar 

  22. M. Cutler and N.F. Mott: Observation of Anderson localization in an electron gas. Phys. Rev. 181(3), 1336 (1969).

    Article  CAS  Google Scholar 

  23. A.J. Bosman and H.J. Van Daal: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19(77), 1 (1970).

    Article  CAS  Google Scholar 

  24. B. Hessen, S.A. Sunshine, T. Siegrist, A.T. Fiory, J.V. Waszczak: Structure and properties of reduced barium niobium oxide single crystals obtained from borate fluxes. Chem. Mater. 3(16), 528 (1991).

    Article  CAS  Google Scholar 

  25. O.G. D’yachenko, S.Y. Istomin, A.M. Abakumov, and E.V. Antipov: Synthesis, structure, and properties of mixed niobium(IV,V) oxides. Inorg. Mater. 36(3), 247 (2000).

    Article  Google Scholar 

  26. P.B. Jamieson: Ferroelectric tungsten bronze-type crystal structures. I. Barium strontium niobate Ba0.27Sr0.75Nb2O5.78. J. Chem. Phys. 48(11), 5048 (1968).

    Article  CAS  Google Scholar 

  27. M. Trubelja, E. Ryba, and D.K. Smith: A study of positional disorder in strontium barium niobate. J. Mater. Sci. 31, 1435 (1996).

    Article  CAS  Google Scholar 

  28. I. Levin, M.C. Stennett, G.C. Miles, D.I. Woodward, A.R. West, and I.M. Reaney: Coupling between octahedral tilting and ferroelectric order in tetragonal tungsten bronze-structured dielectrics. Appl. Phys. Lett. 89(12), 122908 (2006).

    Article  Google Scholar 

  29. C.A. Randall, R. Guo, A.S. Bhalla, and L.E. Cross: Microstructure-property relations in tungsten bronze lead barium niobate, Pb1−xBaxNb2O6. J. Mater. Res. 6(8), 1720 (1991).

    Article  CAS  Google Scholar 

  30. J.A. Bock: Investigation of Reduced (SrxBa1−x)Nb2O6 as a Ferroelectric-Based Thermoelectric. Ph.D. Thesis, Pennsylvania State University, 2016.

  31. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7(2), 105 (2008).

    Article  CAS  Google Scholar 

  32. I. Terasaki: Layered cobalt oxides: correlated electrons for thermoelectrics. In Thermoelectr. Nanomater. SE-3, K. Koumoto and T. Mori, eds. (Springer, Berlin, 2013); pp. 51–70.

    Chapter  Google Scholar 

  33. Y. Li, J. Liu, Y. Zhang, Y. Zhou, J. Li, W. Su, J. Zhai, H. Wang, and C. Wang: Enhancement of thermoelectric performance of Sr0.7Ba0.3Nb2O6−δ ceramics by lanthanum doping. Ceram. Int. 42(1), 1128 (2016).

    Article  CAS  Google Scholar 

  34. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, and H. Nagai: Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scr. Mater. 48(4), 403 (2003).

    Article  CAS  Google Scholar 

  35. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto: High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97(3), 34106 (2005).

    Article  Google Scholar 

  36. S. Funahashi, T. Nakamura, K. Kageyama, and H. Ieki: Monolithic oxide–metal composite thermoelectric generators for energy harvesting. J. Appl. Phys. 109(12), 124509 (2011).

    Article  Google Scholar 

  37. M. Ohtaki and R. Hayashi: Enhanced Thermoelectric Performance of Nanostructured ZnO: A possibility of selective phonon scattering and carrier energy filtering by nanovoid structure. In Thermoelectr. 2006. ICT’06. 25th Int. Conf. (IEEE, Vienna, 2006), pp. 276–279.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the National Science Foundation under grant number DMR-1206518. The author would also like to thank Wei Wei Zhao of the Moses Chan group from The Pennsylvania State University for assistance in the Hall measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J.H., Bock, J.A., Guo, H. et al. High-temperature thermoelectric characterization of filled strontium barium niobates: power factors and carrier concentrations. Journal of Materials Research 32, 1160–1167 (2017). https://doi.org/10.1557/jmr.2017.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.18

Navigation