Skip to main content
Log in

Retrogression on corrosion behavior of spray formed Al-7075

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of retrogression and re-aging (RRA) treatment on intergranular corrosion (IGC), exfoliation corrosion (EXCO), stress corrosion cracking (SCC) behavior and microstructure of spray formed Al-7075 were investigated by a scanning electron microscope, a transmission electron microscope, slow strain rate test, and EXCO and IGC test. The results show that the precipitates are redissolved in the matrix of the alloy after retrogression at 200 °C for a suitable time (8 min), and the grain boundary precipitates are discrete and the obvious precipitate free zones are left at the grain boundaries. After RRA with suitable retrogressed time, thin homogeneous dispersive precipitates are separated out again in the matrix. After retrogression at 200 °C for 8 min and re-aging, the ultimate tensile strength, elongation, IGC depth, EXCO rating, and SCC index of spray formed Al-7075 are 791 MPa, 8.5%, 29.8 μm, EA, and 0.155, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, and E.J. Lavernia: Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 61, 2163–2178 (2013).

    Article  CAS  Google Scholar 

  2. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014).

    Article  CAS  Google Scholar 

  3. S.L. George and R.D. Knutsen: Composition segregation in semi-solid metal cast AA7075 aluminium alloy. J. Mater. Sci. 47, 4716–4725 (2012).

    Article  CAS  Google Scholar 

  4. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater. 58, 248–260 (2010).

    Article  CAS  Google Scholar 

  5. M. Jeyakumar, S. Kumar, and G.S. Gupta: Microstructure and properties of the spray-formed and extruded 7075 Al alloy. Mater. Manuf. Processes 25, 777–785 (2010).

    Article  CAS  Google Scholar 

  6. M. Jeyakumar, S. Kumar, and G.S. Gupta: The influence of processing parameters on characteristics of an aluminum alloy spray deposition. Mater. Manuf. Processes 24, 693–699 (2009).

    Article  CAS  Google Scholar 

  7. R.M. Su, Y.D. Qu, J.H. You, and R.D. Li: Study on a new retrogression and re-aging treatment of spray formed Al–Zn–Mg–Cu alloy. J. Mater. Res. 31, 573–579 (2016).

    Article  CAS  Google Scholar 

  8. J.L. Shi, H.G. Yan, B. Su, J.H. Chen, S.Q. Zhu, and G. Chen: Preparation of a functionally gradient aluminum alloy metal matrix composite using the technique of spray deposition. Mater. Manuf. Processes 26, 1236–1241 (2011).

    Article  CAS  Google Scholar 

  9. R.E. Ricker, E.U. Lee, R. Taylor, C. Lei, B. Pregger, and E. Lipnickas: Chloride ion activity and susceptibility of Al alloys 7075-T6 and 5083-H131 to stress corrosion cracking. Metall. Mater. Trans. A 44, 1353–1364 (2013).

    Article  CAS  Google Scholar 

  10. S. Rajakumar and V. Balasubramanian: Predicting grain size, and tensile strength of friction stir welded joints of AA7075-T6 aluminium alloy. Mater. Manuf. Processes 27, 78–83 (2012).

    Article  CAS  Google Scholar 

  11. G. Silva, B. Rivolta, R. Gerosa, and U. Derudi: Study of the SCC behavior of 7075 aluminum alloy after one-step aging at 163 °C. J. Mater. Eng. Perform. 22, 210–214 (2013).

    Article  CAS  Google Scholar 

  12. E.M. Arnold, J.J. Schubbe, P.J. Moran, and R.A. Bayles: Comparison of SCC thresholds and environmentally assisted cracking in 7050-T7451 aluminum plate. J. Mater. Eng. Perform. 21, 2480–2486 (2012).

    Article  CAS  Google Scholar 

  13. H. Fooladfar, B. Hasnemi, and M. Younesi: The effect of the surface treating and high-temperature aging on the strength and SCC susceptibility of 7075 aluminum alloy. J. Mater. Eng. Perform. 19, 852–859 (2010).

    Article  CAS  Google Scholar 

  14. M.J. Starink and S.C. Wang: A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 51, 5131–5150 (2003).

    Article  CAS  Google Scholar 

  15. D. Wang, D.R. Ni, and Z.Y. Ma: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy. Mater. Sci. Eng., A 494, 360–366 (2008).

    Article  Google Scholar 

  16. B.M. Cina: Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking. U.S. Patent No. 3.856.584, December 24, 1974.

  17. G. Peng, K. Chen, S. Chen, and H. Fang: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy. Mater. Sci. Eng., A 528, 4014–4018 (2011).

    Article  Google Scholar 

  18. Y. Reda, R. Abdel-Karim, and I. Elmahallawi: Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Mater. Sci. Eng., A 485, 468–475 (2008).

    Article  Google Scholar 

  19. R.M. Su, Y.D. Qu, and R.D. Li: Effect of aging treatments on the mechanical and corrosive behaviors of spray-formed 7075 alloy. J. Mater. Eng. Perform. 23, 3842–3848 (2014).

    Article  CAS  Google Scholar 

  20. R.M. Su, Y.D. Qu, J.H. You, and R.D. Li: Study on microstructure, mechanical properties and corrosion behavior of spray formed 7075 alloy. Mater. Today Commun. 4, 109–115 (2015).

    Article  Google Scholar 

  21. T. Ohnishi, Y. Ibaraki, and T. Ito: Improvement of fracture toughness in 7475 aluminum alloy by the RRA (retrogression and re-aging) process. Mater. Trans. JIM 30, 601–607 (1989).

    Article  Google Scholar 

  22. A.F. Oliveira, Jr., M.C. De Barros, K.R. Cardoso, and D.N. Travessa: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys. Mater. Sci. Eng., A 379, 321–326 (2004).

    Article  Google Scholar 

  23. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 58, 4814–4826 (2010).

    Article  CAS  Google Scholar 

  24. X.J. Wu, M.D. Raizenne, R.T. Holt, C. Poon, and W. Walllace: Thirty years of retrogression and re-aging (RRA). Can. Aeronaut. Space J. 47, 131–138 (2001).

    Google Scholar 

  25. P. Bai, X. Hou, X. Zhang, C. Zhao, and Y. Xing: Microstructure and mechanical properties of a large billet of spray formed Al–Zn–Mg–Cu alloy with high Zn content. Mater. Sci. Eng., A 508, 23–27 (2009).

    Article  Google Scholar 

  26. E. Salamci: Ageing behaviour of spray cast Al–Zn–Mg–Cu alloys. Turk. J. Eng. Environ. Sci. 25, 681–686 (2001).

    CAS  Google Scholar 

  27. E. Salamci: Mechanical properties of spray cast 7XXX series aluminum alloys. Turk. J. Eng. Environ. Sci. 26, 345–352 (2002).

    CAS  Google Scholar 

  28. G. Sha and A. Cerezo: Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 52, 4503–4516 (2004).

    Article  CAS  Google Scholar 

  29. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443–3451 (2001).

    Article  CAS  Google Scholar 

  30. H. Jiang and R.G. Faulkner: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—I. The model. Acta Mater. 44, 1857–1864 (1996).

    Article  CAS  Google Scholar 

  31. H. Jiang and R.G. Faulkner: Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—II. Application of the models. Acta Mater. 44, 1865–1871 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by the National Natural Science Foundation of China (51574167), China Postdoctoral Science Foundation (2016M601334), Program for Innovative Research Team in University of Liaoning Province (LT2015020), and Science and Technology Program of Liaoning Provincial Department of Education (LGD2016003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Su, J., Qu, Y. et al. Retrogression on corrosion behavior of spray formed Al-7075. Journal of Materials Research 32, 2621–2627 (2017). https://doi.org/10.1557/jmr.2017.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.220

Navigation