Skip to main content
Log in

Influence of solid solution strengthening on the local mechanical properties of single crystal and ultrafine-grained binary Cu–Al X solid solutions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the influence of Al-solutes on the mechanical behavior of Cu–Al X solid solutions has been studied using indentation strain rate jump tests for single crystalline and ultrafine-grained (UFG) microstructures from high pressure torsion (HPT) processing. Al-solutes in Cu classically lead to a solid solution strengthening, coupled with a decrease in stacking fault energy, which influences also the grain size after HPT processing. For all alloys, a higher hardness is found at lower indentation depths, which can be nicely described by a modified Nix/Gao model down to 100 nm indentation depth. Among the single crystals, the largest size effects are found for the higher solute contents, indicating a stronger work hardening at small length scales for the solid solutions. The dilute UFG solid solutions showed a strong softening after a strain rate reduction test, with a pronounced transient region. Cu–Al15 is, however, quite stable, showing abrupt changes in hardness without strong transients. This indicates that solute solution strengthening does not only influence the indentation size effect and structure formation during HPT processing but also stabilizes the grain structure during subsequent deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. B. Backes, K. Durst, and M. Göken: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradoxon of strength and ductility in metals processed by SPD. J. Mater. Res. 17, 5 (2002).

    Article  CAS  Google Scholar 

  3. H.W. Höppel, J. May, and M. Göken: Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6, 781 (2004).

    Article  Google Scholar 

  4. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53, 189 (2005).

    Article  CAS  Google Scholar 

  5. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine grained fcc- and bcc-type metals. Mater. Sci. Forum 503–504, 781 (2006).

    Article  Google Scholar 

  6. Y.J. Li, J. Mueller, H.W. Höppel, M. Göken, and W. Blum: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).

    Article  CAS  Google Scholar 

  7. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  8. B. Backes, Y.Y. Huang, M. Göken, and K. Durst: The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197 (2009).

    Article  CAS  Google Scholar 

  9. D. Kiener, K. Durst, M. Rester, and A.M. Minor: Revealing deformation mechanisms with nanoindentation. JOM 61, 14 (2009).

    Article  Google Scholar 

  10. M.A. Lodes, A. Hartmaier, M. Göken, and K. Durst: Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: Experiments and molecular dynamics simulations. Acta Mater. 59 (2011).

  11. K. Durst, O. Franke, A. Böhner, and M. Göken: Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007).

    Article  CAS  Google Scholar 

  12. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).

    Article  CAS  Google Scholar 

  13. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177 (2013).

    Article  CAS  Google Scholar 

  14. R. Pippan, S. Scheriau, A. Hohenwarter, and M. Hafok: Advantages and limitations of HPT: A review. Mater. Sci. Forum 584–586, 16 (2008).

    Article  Google Scholar 

  15. K. Edalati and Z. Horita: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325 (2016).

    Article  CAS  Google Scholar 

  16. X.H. An, S. Qu, S.D. Wu, and Z.F. Zhang: Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealing. J. Mater. Res. 26, 407 (2011).

    Article  CAS  Google Scholar 

  17. X.H. An, S.D. Wu, and Z.F. Zhang: Influence of stacking fault energy on the microstructures and grain refinement in the Cu–Al alloys during equal-channel angular pressing. Mater. Sci. Forum 667–669, 379 (2011).

    Google Scholar 

  18. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr. Mater. 63, 560 (2010).

    Article  CAS  Google Scholar 

  19. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion. Scr. Mater. 64, 249 (2011).

    Article  CAS  Google Scholar 

  20. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu–Al alloys. Appl. Phys. Lett. 92, 23 (2008).

    Google Scholar 

  21. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos. Mag. 88, 3011 (2008).

    Article  CAS  Google Scholar 

  22. Y.L. Gong, C.E. Wen, X.X. Wu, S.Y. Ren, L.P. Cheng, and X.K. Zhu: The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys. Mater. Sci. Eng., A 583, 199 (2013).

    Article  CAS  Google Scholar 

  23. Y. Zhang, N.R. Tao, and K. Lu: Effects of stacking fault energy, strain rate and temperature on the microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Mater. 59, 6048 (2011).

    Article  CAS  Google Scholar 

  24. M. Hafok and R. Pippan: Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials. Int. J. Mater. Res. 101, 1097 (2010).

    Article  CAS  Google Scholar 

  25. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita: Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 69, 68 (2014).

    Article  CAS  Google Scholar 

  26. A. Hohenwarter, A. Taylor, R. Stock, and R. Pippan: Effect of large shear deformations on the fracture behavior of a fully pearlitic steel. Metallurgical and Materials Transactions A 42, 1609 (2011).

    Article  CAS  Google Scholar 

  27. X. An, Q. Lin, S. Wu, and Z. Zhang: Improved fatigue strengths of nanocrystalline Cu and Cu–Al alloys. Mater. Res. Lett. 3, 135 (2015).

    Article  CAS  Google Scholar 

  28. P.C.J. Gallagher: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 2429 (1970).

    CAS  Google Scholar 

  29. O. Engler: Deformation and texture of copper–manganese alloys. Acta Mater. 48, 4827 (2000).

    Article  CAS  Google Scholar 

  30. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  31. K. Durst and V. Maier: Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr. Opin. Solid State Mater. Sci. 19, 340 (2015).

    Article  CAS  Google Scholar 

  32. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).

    Article  CAS  Google Scholar 

  33. B. Merle, V. Maier-Kiener, and G.M. Pharr: Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation. Acta Mater. 134, 167 (2017).

    Article  CAS  Google Scholar 

  34. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  35. V. Maier, C. Schunk, M. Göken, and K. Durst: Microstructure-dependent deformation behaviour of bcc-metals—Indentation size effect and strain rate sensitivity. Philos. Mag. 95, 1766 (2014).

    Article  CAS  Google Scholar 

  36. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).

    Article  CAS  Google Scholar 

  37. K. Durst, B. Backes, and M. Göken: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).

    Article  CAS  Google Scholar 

  38. M. Rester, C. Motz, and R. Pippan: Stacking fault energy and indentation size effect: DO they interact? Scr. Mater. 58, 187 (2008).

    Article  CAS  Google Scholar 

  39. A.A. Elmustafa and D.S. Stone: Stacking fault energy and dynamic recovery: Do they impact the indentation size effect? Mater. Sci. Eng., A 358, 1 (2003).

    Article  CAS  Google Scholar 

  40. A. Portevin and H. Le Chatelier: Heat treatment of aluminium-copper alloys. Trans. Am. Soc. Steel Treat. 5, 457 (1924).

    CAS  Google Scholar 

  41. W. Blum and X.H. Zeng: A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 57, 1966 (2009).

    Article  CAS  Google Scholar 

  42. N. Ahmed and A. Hartmaier: Mechanisms of grain boundary softening and strain-rate sensitivity in deformation of ultrafine-grained metals at high temperatures. Acta Mater. 59, 4323 (2011).

    Article  CAS  Google Scholar 

  43. X.X. Wu, X.Y. San, Y.L. Gong, L.P. Chen, C.J. Li, and X.K. Zhu: Studies on strength and ductility of Cu–Zn alloys by stress relaxation. Mater. Des. 47, 295 (2013).

    Article  CAS  Google Scholar 

  44. W. Blum, Y.J. Li, and K. Durst: Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Mater. 57 (17), 5207–5217 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Parts of the experimental work were performed when V.M-K. and K.D. were still at the Chair of General Materials Properties (FAU Erlangen-Nürnberg); therefore, the authors thank Prof. M. Göken for his support. Further, financial support by the Austrian Federal Government (837900) within the framework of the COMET Funding Program (MPPE, A7.19) (V.M-K.) and by the ERC (USMS: 340185) (R.P.) as well as the National Natural Science Foundation of China (NSFC) under grant Nos. 51331007 and 51471170 (Z.F.) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Durst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier-Kiener, V., An, X., Li, L. et al. Influence of solid solution strengthening on the local mechanical properties of single crystal and ultrafine-grained binary Cu–Al X solid solutions. Journal of Materials Research 32, 4583–4591 (2017). https://doi.org/10.1557/jmr.2017.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.320

Navigation