Skip to main content
Log in

Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A free standing 2D PS colloidal crystal with Au nanoshells/hydrogel composite film (CAuHCF) was fabricated by embedding a 2D PS colloidal crystal with Au nanoshells into a polyacrylic acid (PAA) hydrogel film. This CAuHCF can act as a visualized sensor with high diffraction intensity. The 2D PS colloidal crystal with Au nanoshells was prepared by depositing an Au layer on PS colloidal crystal obtained by interfacial self-assembly. The diffraction intensity of the CAuHCF was increased by about 30-fold than that of traditional 2D PS colloidal crystal/hydrogel composite film on transparent substrate due to large scattering cross section of Au shell. Such sensors based Au nanoshells array with the simple preparation process and the strong diffraction signal are promising ones for practical applications in visual detection. Additionally, with the simple preparation process and high diffraction intensity, other visualized sensors based different hydrogel matrix and the 2D PS colloidal crystal with Au nanoshells could be synthesized for monitoring various analysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. F.R. Baptista, S.A. Belhout, S. Giordanib, and S.J. Quinn: Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44, 4433 (2015).

    Article  CAS  Google Scholar 

  2. H.H. Zhang, F. Zhou, M. Liu, D.L. Liu, D.D. Men, W.P. Cai, G.T. Duan, and Y. Li: Spherical nanoparticle arrays with tunable nanogaps and their hydrophobicity enhanced rapid SERS detection by localized concentration of droplet evaporation. Adv. Mater. Interfaces 2, 1500031 (2015).

    Article  CAS  Google Scholar 

  3. L.L. Qu, Y.Y. Liu, S.H. He, J.Q. Chen, Y. Liang, and H.T. Li: Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cell. Biosens. Bioelectron. 77, 292 (2016).

    Article  CAS  Google Scholar 

  4. H.H. Zhang, M. Liu, F. Zhou, D.L. Liu, G.Q. Liu, G.T. Duan, W.P. Cai, and Y. Li: Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates. Small 11, 844 (2015).

    Article  CAS  Google Scholar 

  5. J. Yan, V.A. Pedrosa, A.L. Simonian, and A. Revzin: Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors. ACS Appl. Mater. Interfaces 2, 748 (2010).

    Article  CAS  Google Scholar 

  6. D.Y. Zhai, B.R. Liu, Y. Shi, L.J. Pan, Y.Q. Wang, W.B. Li, R. Zhang, and G.H. Yu: Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540 (2013).

    Article  CAS  Google Scholar 

  7. W.T. Wu, N. Mitra, E.C.Y. Yan, and S.Q. Zhou: Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4, 4831 (2010).

    Article  CAS  Google Scholar 

  8. L. Li, B. Zhao, Y. Long, J.M. Gao, G.Q. Yang, C.H. Tung, and K. Song: Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution. J. Mater. Chem. C 3, 9524 (2015).

    Article  CAS  Google Scholar 

  9. E.T. Tian, J.X. Wang, Y.M. Zheng, Y.L. Song, L. Jiang, and D.B. Zhu: Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18, 1116 (2008).

    Article  CAS  Google Scholar 

  10. J.H. Kang, J.H. Moon, S.K. Lee, S.G. Park, S.G. Jang, S. Yang, and S.M. Yang: Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography. Adv. Mater. 20, 3061 (2008).

    Article  CAS  Google Scholar 

  11. J.Y. Wang, Y. Cao, Y. Feng, F. Yin, and J.P. Gao: Multiresponsive inverse-opal hydrogels. Adv. Mater. 19, 3865 (2007).

    Article  CAS  Google Scholar 

  12. E.T. Tian, Y. Ma, L.Y. Cui, J.X. Wang, Y.L. Song, and L. Jiang: Color-oscillating photonic crystal hydrogel. Macromol. Rapid Commun. 30, 1719 (2009).

    Article  CAS  Google Scholar 

  13. Z.Y. Cai, L.S. Natasha, J.T. Zhang, and S.A. Asher: Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87, 5013 (2015).

    Article  CAS  Google Scholar 

  14. J.T. Zhang, L.L. Wang, J. Luo, A. Tikhonov, N. Kornienko, and S.A. Asher: 2-D array photonic crystal sensing motif. J. Am. Chem. Soc. 133, 9152 (2011).

    Article  CAS  Google Scholar 

  15. A.V. Goponenko and S.A. Asher: Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials. J. Am. Chem. Soc. 127, 10753 (2005).

    Article  CAS  Google Scholar 

  16. C.J. Zhang, M.D. Losego, and P.V. Braun: Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239 (2013).

    Article  CAS  Google Scholar 

  17. D. Nakayama, Y. Takeoka, M. Watanabe, and K. Kataoka: Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem., Int. Ed. 42, 4197 (2003).

    Article  CAS  Google Scholar 

  18. V.L. Alexeev, A.C. Sharma, A.V. Goponenko, S. Das, I.K. Lednev, C.S. Wilcox, D.N. Finegold, and S.A. Asher: High ionic strength glucose-sensing photonic crystal. Anal. Chem. 75, 2316 (2003).

    Article  CAS  Google Scholar 

  19. C.J. Zhang, G.G. Cano, and P.V. Braun: Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678 (2014).

    Article  CAS  Google Scholar 

  20. S.A. Asher, V.L. Alexeev, A.V. Goponenko, A.C. Sharma, I.K. Lednev, C.S. Wilcox, and D.N. Finegold: Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322 (2003).

    Article  CAS  Google Scholar 

  21. Y.J. Lee, S.A. Pruzinsky, and P.V. Braun: Glucose-sensitive inverse opal hydrogels: Analysis of optical diffraction response. Langmuir 20, 3096 (2004).

    Article  CAS  Google Scholar 

  22. V.L. Alexeev, S. Das, D.N. Finegold, and S.A. Asher: Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353 (2004).

    Article  CAS  Google Scholar 

  23. Z.Y. Cai, D.H. Kwak, D. Punihaole, Z.M. Hong, S.S. Velankar, X.Y. Liu, and S.A. Asher: A photonic crystal protein hydrogel sensor for candida albicans. Angew. Chem., Int. Ed. 54, 13036 (2015).

    Article  CAS  Google Scholar 

  24. Y.X. Yuan, Z.L. Li Y. Liu, J.P. Gao, Z. Pan, and Y. Liu: Hydrogel photonic sensor for the detection of 3-pyridinecarboxamide. Chem. Eur. J. 18, 303 (2012).

    Article  CAS  Google Scholar 

  25. B. Zhang, Y.L. Cai, L.R. Shang, H. Wang, Y. Cheng, F. Rong, Z.Z. Gu, and Y.J. Zhao: A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. Nanoscale 8, 3841 (2016).

    Article  CAS  Google Scholar 

  26. K.I. MacConaghy, C.I. Geary, J.L. Kaar, and M.P. Stoykovich: Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136, 6896 (2014).

    Article  CAS  Google Scholar 

  27. J.Y. Wang, Y.D. Hu, R.H. Deng, R.J. Liang, W.K. Li, S.Q. Liu, and J.T. Zhu: Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29, 8825 (2013).

    Article  CAS  Google Scholar 

  28. A.C. Sharma, T. Jana, R. Kesavamoorthy, L. Shi, M.A. Virji, D.N. Finegold, and S.A. Asher: A general photonic crystal sensing motif: Creatinine in bodily fluids. J. Am. Chem. Soc. 126, 2971 (2004).

    Article  CAS  Google Scholar 

  29. M.B. Moshe, V.L. Alexeev, and S.A. Asher: Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 78, 5149 (2006).

    Article  CAS  Google Scholar 

  30. F. Xue, Z.H. Meng, F.Y. Wang, Q.H. Wang, M. Xue, and Z.B. Xu: A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2, 9559 (2014).

    Article  CAS  Google Scholar 

  31. J.T. Zhang, L.L. Wang, D.N. Lamont, S.S. Velankar, and S.A. Asher: Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem., Int. Ed. 51, 6117 (2012).

    Article  CAS  Google Scholar 

  32. J.T. Zhang, Z.Y. Cai, D.H. Kwak, X.Y. Liu, and S.A. Asher: Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A. Anal. Chem. 86, 9036 (2014).

    Article  CAS  Google Scholar 

  33. J.T. Zhang, N. Smith, and S.A. Asher: Two-dimensional photonic crystal surfactant detection. Anal. Chem. 84, 6416 (2012).

    Article  CAS  Google Scholar 

  34. D.D. Men, H.H. Zhang, L.F. Hang, D.L. Liu, X.Y. Li, W.P. Cai, Q.H. Xiong, and Y. Li: Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: Anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 3, 3659 (2015).

    Article  CAS  Google Scholar 

  35. J.T. Zhang, X. Chao, X.Y. Liu, and S.A. Asher: Two-dimensional array Debye ring diffraction protein recognition sensing. Chem. Commun. 49, 6337 (2013).

    Article  CAS  Google Scholar 

  36. Y. Li, N. Koshizaki, and W.P. Cai: Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 255, 357 (2011).

    Article  CAS  Google Scholar 

  37. Y. Li, G.T. Duan, G.Q. Liu, and W.P. Cai: Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 42, 3614 (2013).

    Article  CAS  Google Scholar 

  38. C. Li, G.S. Hong, P.W. Wang, D.P. Yu, and L.M. Qi: Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem. Mater. 21, 891 (2009).

    Article  CAS  Google Scholar 

  39. X.Z. Ye and L.M. Qi: Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 6, 608 (2011).

    Article  CAS  Google Scholar 

  40. Y.D. Liu, J. Goebl, and Y.D. Yin: Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610 (2013).

    Article  CAS  Google Scholar 

  41. H.L. Cong, B. Yu, J.G. Tang, Z.J. Li, and X.S. Liu: Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 42, 7774 (2013).

    Article  CAS  Google Scholar 

  42. Z.Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, and O. Sato: Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew. Chem., Int. Ed. 41, 1153 (2002).

    Article  CAS  Google Scholar 

  43. K. Lee and S.A. Asher: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122, 9534 (2000).

    Article  CAS  Google Scholar 

  44. D.D. Men, F. Zhou, L.F. Hang, X.Y. Li, G.T. Duan, W.P. Cai, and Y. Li: Functional hydrogel film attached with 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 4, 2117 (2016).

    Article  CAS  Google Scholar 

  45. D.D. Men, D.L. Liu, and Y. Li: Visualized optical sensors based on two/three-dimensional photonic crystals for biochemical. Sci. Bull. 61, 1358 (2016).

    Article  CAS  Google Scholar 

  46. J.M. Weissman, H.B. Sunkara, A.S. Tse, and S.A. Asher: Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 51371165, 51571189), the State Key Program of National Natural Science Foundation of China (Grant No. 51531006), Anhui Provincial Natural Science Foundation (Grant No. 1508085JGD07), Cross-disciplinary Collaborative Teams Program in CAS, the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, D.D., Zhou, F., Li, H.L. et al. Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. Journal of Materials Research 32, 717–725 (2017). https://doi.org/10.1557/jmr.2017.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.34

Navigation