Skip to main content
Log in

Nanocrystalline high-entropy alloys

  • Invited Feature Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article is a review of research on nanostructured high-entropy alloys with emphasis on those made by the severe plastic deformation methods of mechanical alloying and high-pressure torsion. An example of thin film refractory metal alloys made by magnetron sputtering is also presented. The article will begin with a discussion of the seminal research of B.S. Murty and co-workers who first produced nanocrystalline high-entropy alloys by mechanical alloying of powders. This will be followed by a listing of research, in mostly chronological order, of mainly 3d transition metal alloys made nanocrystalline by mechanical alloying. Research on the well-studied Cantor alloy, from the literature and the author’s laboratory will be presented. The author’s and co-worker’s research on a low-density high-entropy alloy with single-phase fcc or hcp structure and an extremely high strength (hardness)-to-weight ratio will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, Elsevier, Oxford, U.K., 2014); p. 80.

    Google Scholar 

  2. Y. Zhang, C.C. Koch, S.G. Ma, H. Zhang, and Y. Pan: Fabrication routes. In High Entropy Alloys: Fundamentals and Applications, M.C. Gao, J-W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Switzerland, 2016); pp. 171–173.

    Google Scholar 

  3. S. Varalakshmi: Synthesis and characterization of nanocrystalline high entropy alloys by mechanical alloying. Ph.D. thesis, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 2008.

    Google Scholar 

  4. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253 (2008).

    Article  CAS  Google Scholar 

  5. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).

    Article  Google Scholar 

  6. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027 (2010).

    Article  Google Scholar 

  7. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J. Mater. Sci. 45, 5158 (2010).

    Article  CAS  Google Scholar 

  8. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, Y.C. Wang, and Q.J. Zhang: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, L31 (2009).

    Article  CAS  Google Scholar 

  9. Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J.W. Yeh, T.S. Chin, and S.K. Chen: Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).

    Article  CAS  Google Scholar 

  10. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).

    Article  CAS  Google Scholar 

  11. S. Praveen, B.S. Murty, and R.S. Kottada: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).

    Article  CAS  Google Scholar 

  12. Z. Fu, W. Chen, S. Fang, D. Zhang, H. Xiao, and D. Zhu: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).

    Article  CAS  Google Scholar 

  13. N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).

    Article  CAS  Google Scholar 

  14. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).

    Article  CAS  Google Scholar 

  15. R. Sriharitha, B.S. Murty, and R.S. Kottada: Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 32, 119 (2013).

    Article  CAS  Google Scholar 

  16. E. Fazakas, B. Varga, and L.K. Varga: Processing and properties of nanocrystalline CoCrFeNiCuAlTiXVMo (X = Zn, Mn) high entropy alloys by mechanical alloying. ISRN Mech. Eng. 2013, https://doi.org/10.1155/2013/167869 (2013).

  17. S. Mohanty, N.P. Gurao, and K. Biswas: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).

    Article  CAS  Google Scholar 

  18. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, and F. Zhang: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high entropy alloy. J. Alloys Compd. 589, 61 (2014).

    Article  CAS  Google Scholar 

  19. C.S. Babu, K. Sivaprasad, Y. Muthupandi, and J.A. Szpunar: Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci. 5, 1020 (2014).

    Article  CAS  Google Scholar 

  20. Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, and E.J. Lavernia: Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 644, 10 (2015).

    Article  CAS  Google Scholar 

  21. Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).

    Article  CAS  Google Scholar 

  22. Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, and P.Q. Dai: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).

    Article  CAS  Google Scholar 

  23. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).

    Article  CAS  Google Scholar 

  24. N. Zhou, T. Hu, J. Huang, and J. Luo: Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160 (2016).

    Article  CAS  Google Scholar 

  25. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an fcc structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).

    Article  CAS  Google Scholar 

  26. Y. Zhou, H. Ma, and R. Spolenak: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).

    Article  Google Scholar 

  27. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).

    Article  CAS  Google Scholar 

  28. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  29. B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure, and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  30. E.J. Pickering, R. Munoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).

    Article  CAS  Google Scholar 

  31. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 1780 (2013).

    Article  CAS  Google Scholar 

  32. M. Leoni, T. Confente, and P. Scardi: PM2K: a flexible program implementing Whole Powder Pattern Modelling. Z. Kristallogr. 23, 249 (2006).

    Article  Google Scholar 

  33. R.E. Schramm and R.P. Reed: Stacking fault energies of fcc Fe–Ni alloy by X-ray diffraction line profile analysis. Metall. Trans. A 7, 359 (1976).

    Article  Google Scholar 

  34. D-H. Lee, I-C. Choi, M-Y. Seok, J. He, Z. Lu, J-Y. Suh, M. Kawasaki, and T.G. Langdon: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).

    Article  CAS  Google Scholar 

  35. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342 (2017).

    Article  CAS  Google Scholar 

  36. H. Shahmir, M. Nili-Ahmadabadi, A. Shafie, and T.B. Langdon: Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0.1 high entropy alloy processed by high-pressure torsion. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012017 (2017).

    Article  Google Scholar 

  37. A. Heczel, M. Kawasaki, J.L. Labar, J-I. Jang, T.G. Langdon, and J. Gubicza: Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J. Alloys Compd. 711, 143 (2017).

    Article  CAS  Google Scholar 

  38. Y. Liu, J. Wang, Q. Fang, B. Liu, Y. Wu, and S. Chen: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).

    Article  CAS  Google Scholar 

  39. V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).

    Article  CAS  Google Scholar 

  40. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entrophy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl C. Koch.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, C.C. Nanocrystalline high-entropy alloys. Journal of Materials Research 32, 3435–3444 (2017). https://doi.org/10.1557/jmr.2017.341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.341

Navigation