Skip to main content

Advertisement

Log in

Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sterilization is one of the last stages prior to the implantation of a biomaterial. Therefore, the method should be chosen carefully as this is determinant not to compromise the properties of the material. In this context, three sterilization processes were evaluated as to their effect on the properties of a silane hybrid coating: steam autoclave, ethylene oxide, and hydrogen peroxide plasma. The coating was obtained from a sol consisting of alkoxysilane Tetraethoxysilane and organoalcoxysilane Methyltriethoxysilane (MTES), applied to the Ti6Al4V substrate, to increase its corrosion resistance and biocompatibility. After sterilization, the samples were characterized by scanning electron microscopy, atomic force microscopy, profilometry, wetabillity, and Fourier transform infrared spectroscopy. The electrochemical behavior was monitored by open circuit potential and potentiodynamic polarization curves. The cytocompatibility was evaluated by adhesion, viability, and morphological alterations in the MG-63 cells. The results showed that the protective behavior of the hybrid coating was compromised regardless of the sterilization method. However, the steam autoclave caused more morphological changes on the silane hybrid coating as well as on the Ti6Al4V substrate than the other two sterilization methods. Although the sterilized hybrid coating did not show cytotoxicity, the hybrid coating sterilized by hydrogen peroxide plasma showed a higher percentage of viable cells. The ethylene oxide presented the lowest percentage of viability and the highest cell death rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.H. Park, R.O. Navarrete, R.E. Baier, A.E. Meyer, R. Tannenbaum, B.D. Boyan, and Z. Schwartz: Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 8, 1966 (2012).

    Article  CAS  Google Scholar 

  2. M.A. Vetten, C.S. Yah, T. Singh, and M. Gulumian: Challenges facing sterilization and depyrogenation of nanoparticles: Effects on structural stability and biomedical applications. Nanomedicine 10, 1391 (2014).

    Article  CAS  Google Scholar 

  3. X.L. Liu, W.R. Zhou, Y.H. Wu, Y. Chen, and Y.F. Zheng: Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys. Mater. Sci. Eng., C 33, 4144 (2013).

    Article  CAS  Google Scholar 

  4. Q.Q. Qiu, W.Q. Sun, and J. Connor: Sterilization of Biomaterials of Synthetic and Biological Origin (Elsevier, Branchburg, New Jersey, 2011); p. 127.

    Google Scholar 

  5. M. Savaris, V. Dos Santos, and R.N. Brandalise: Influence of different sterilization processes on the properties of commercial poly(lactic acid). Mater. Sci. Eng., C 69, 661 (2016).

    Article  CAS  Google Scholar 

  6. A.J. Wilson and S. Nayak: Disinfection, sterilization and disposables. Anaesthesia Intensive Care Med. 14, 423 (2013).

    Article  Google Scholar 

  7. J. Chen, J. Wang, and H. Yuan: Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential. Appl. Surf. Sci. 284, 900 (2013).

    Article  CAS  Google Scholar 

  8. F. Yu, O. Addison, and A.J. Davenport: A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater. 26, 355 (2015).

    Article  CAS  Google Scholar 

  9. E. Vasilescu, P. Drob, D. Raducanu, J.M.C. Moreno, M. Popa, and J.C.M. Rosca: Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros. Sci. 51, 2885 (2009).

    Article  CAS  Google Scholar 

  10. N. Somsanith, T.S.N. Narayanan, Y.K. Kim, I.S. Park, T.S. Bae, and M.H. Lee: Surface medication of Ti–15Mo alloy by thermal oxidation: Evaluation of surface characteristics and corrosion resistance in Ringer’s solution. Appl. Surf. Sci. 356, 1117 (2015).

    Article  CAS  Google Scholar 

  11. J. Zhao, M. Milanova, M.M.C.G. Warmoeskerken, and V. Dutschk: Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf., A 413, 273 (2012).

    Article  CAS  Google Scholar 

  12. R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomater. 10, 557 (2014).

    Article  CAS  Google Scholar 

  13. J. Xie and B.L. Luan: Microstructural and electrochemical characterization of hydroxyapatite-coated Ti6Al4V alloy for medical implants. J. Mater. Res. 23, 768 (2008).

    Article  CAS  Google Scholar 

  14. D. Ke, S.F. Robertson, W.S. Dernell, A. Bandyopadhyay, and S. Bose: Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: An in vivo study in rat distal femoral defects. Appl. Mater. Interfaces 9, 25731 (2017).

    Article  CAS  Google Scholar 

  15. R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, and Z. Buyong: A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95 (2016).

    Article  CAS  Google Scholar 

  16. P. Choudhury and D.C. Agrawal: Sol–gel derived hydroxyapatite coatings on titanium substrates. Surf. Coat. Technol. 206, 360 (2011).

    Article  CAS  Google Scholar 

  17. M.J. Juan-Díaz, M. Martínez-Ibáñez, I. Lara-Sáez, S. da Silva, R. Izquierdo, M. Gurruchaga, I. Goñi, and J. Suay: Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Prog. Org. Coat. 96, 42 (2016).

    Article  CAS  Google Scholar 

  18. P. Dubruel, E. Vanderleyden, M. Bergadà, I.D. Paepe, H. Chen, S. Kuypers, J. Luyten, J. Schrooten, L.V. Hoorebeke, and E. Schacht: Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surf. Sci. 600, 2562 (2006).

    Article  CAS  Google Scholar 

  19. S.A. Omar, J. Ballare, and S.M. Ceré: Protection and functionalization of AISI 316L stainless for orthopedic implants: Hybrid coating and sol gel glasses by spray to promote bioactivity. Electrochim. Acta 203, 309 (2016).

    Article  CAS  Google Scholar 

  20. J. Ballarre, R. Seltzer, E. Mendoza, J.C. Orellano, Y.W. Mai, C. García, and S.M. Ceré: Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater. Sci. Eng., C 31, 545 (2011).

    Article  CAS  Google Scholar 

  21. D. Wang and G.P. Bierwagen: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327 (2009).

    Article  CAS  Google Scholar 

  22. A. Zomorodian, F. Brusciotti, A. Fernandes, M.J. Moura, J.C.S. Fernandes, and M.F. Montemor: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206, 4368 (2012).

    Article  CAS  Google Scholar 

  23. N. Hojjati, R. Mozaffarinia, S.R. Hamed, and E. Paimozd: Sol–gel processing of hybrid nanocomposite protective coatings using experimental design. Prog. Org. Coat. 76, 293 (2013).

    Article  CAS  Google Scholar 

  24. C.Y. Zheng, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, and R.Z. Valiev: Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Appl. Surf. Sci. 257, 5913 (2011).

    Article  CAS  Google Scholar 

  25. X. Liu, Z. Yue, T. Romeo, J. Weber, T. Scheuermann, S. Moulton, and G. Wallace: Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 9, 8671 (2013).

    Article  CAS  Google Scholar 

  26. I. Junkar, M. Kulkarni, and B. Drašler: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 79 (2016).

    Article  CAS  Google Scholar 

  27. M. Hirano, T. Kozuka, and Y. Asano: Effect of sterilization and water rinsing on cell adhesion to titanium surfaces. Appl. Surf. Sci. 311, 498 (2014).

    Article  CAS  Google Scholar 

  28. S. Oh, K.S.B. Rammer, K.S. Moon, J.M. Bae, and S. Jins: Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes. Mater. Sci. Eng., C 31, 873 (2011).

    Article  CAS  Google Scholar 

  29. W. Walke, Z. Paszenda, T. Pustelny, M.K. Ziemniak, and M. Basiaga: Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater. Sci. Eng., C 63, 155 (2016).

    Article  CAS  Google Scholar 

  30. J.C. Almeida, L. Joana, V.F.M. Helena, M.A.M. Fernanda, and I.M. Alvado: Evaluating structural and microstructural changes of PDMS–SiO2 hybrid materials after sterilization by gamma irradiation. Mater. Sci. Eng., C 48, 354 (2015).

    Article  CAS  Google Scholar 

  31. C. García, S. Ceré, and A. Durán: Bioactive coatings prepared by sol–gel on stainless steel 316L. J. Non-Cryst. Solids 348, 218 (2004).

    Article  CAS  Google Scholar 

  32. J. Ballarre, D.A. López, W.H. Schreiner, A. Durán, and S.M. Ceré: Protective hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl. Surf. Sci. 253, 7260 (2007).

    Article  CAS  Google Scholar 

  33. J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, F. Peter, and S. Ceré: Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater. 6, 1601 (2010).

    Article  CAS  Google Scholar 

  34. A. Rodríguez-Cano, P. Cintas, M.C. Fernández-Calderón, M.A. Pacha-olivenza, L. Crespo, M.L. González-Martín, and R. Babiano: Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf., B 106, 248 (2013).

    Article  CAS  Google Scholar 

  35. G.T. Smith: Industrial Metrology (Faculty of Technology, Springer, London, 2002); pp. 24–356.

    Book  Google Scholar 

  36. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    Article  CAS  Google Scholar 

  37. J. Ballarre, D.A. López, N.C. Rosero, A. Durán, M. Aparicio, and S.M. Ceré: Electrochemical evaluation of multilayer silica–metacrylate hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel. Surf. Coat. Technol. 203, 80 (2008).

    Article  CAS  Google Scholar 

  38. T. Mosmann: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983).

    Article  CAS  Google Scholar 

  39. M.C. Alley, A.S. Dominic, M. Anne, L.M. Miriam, J.C. Maciej, L.F. Donald, J.A. Betty, G.M. Joseph, H.S. Robert, and R.B. Michael: Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589 (1988).

    CAS  Google Scholar 

  40. A. Nersesyan, M. Kundi, K. Atefie, R. Schulte-hermann, and S. Knasmuller: Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiol., Biomarkers Prev. 15, 1835 (2006).

    Article  CAS  Google Scholar 

  41. E.K.K. Baldin, S.R. Kunst, L.V.R. Beltrami, T.M. Lemos, A.C.B. Quevedo, M.G.S. Ferreira, P.R.R. Santos, V.H.V. Sarmento, and C.F. Malfatti: Ammonium molybdate added in hybrid films applied on tinplate: Effect of the concentration in the corrosion inhibition action. Thin Solid Films 600, 146 (2016).

    Article  CAS  Google Scholar 

  42. M. Wang, Y. Wang, Y. Chen, and H. Gu: Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl. Surf. Sci. 268, 73 (2013).

    Article  CAS  Google Scholar 

  43. P. Innocenzi, M.O. Abdirashid, and M.I. Guglielm: Structure and properties of sol–gel coatings from methyltriethoxysilane and tetraethoxysilane. J. Sol-Gel Sci. Technol. 3, 47 (1994).

    Article  CAS  Google Scholar 

  44. S.R. Kunst, L.V.R. Beltrami, H.R.P. Cardoso, J.A. Santana, V.H.V. Sarmento, I.L. Müller, and C.F. Malfatti: Characterization of siloxane–poly(methyl methacrylate) hybrid films obtained on a tinplate substrate modified by the addition of organic and inorganic acids. Mater. Res. 18, 151 (2015).

    Article  Google Scholar 

  45. J.A. Gan and C.C. Berndt: Plasma surface modification of metallic biomaterials. Surf. Coat. Modif. Met. Biomater. 1, 103 (2015).

    Google Scholar 

  46. G. Müller, H. Benkhai, R. Matthes, B. Finke, W. Friedrichs, N. Geist, W. Langel, and A. Kramer: Poly(hexamethylene biguanide) adsorption on hydrogen peroxide treated Ti–Al–V alloys and effects on wettability, antimicrobial efficacy and cytotoxicity. Biomaterials 35, 5261 (2014).

    Article  CAS  Google Scholar 

  47. M. Pegueroles, F.J. Gil, J.A. Planell, and C. Aparicio: The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf. Coat. Technol. 202, 3470 (2008).

    Article  CAS  Google Scholar 

  48. C.C.R. Wang, M.C. Hsieh, and T.M. Lee: Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6AI4V. Biointerphases 6, 87 (2011).

    Article  CAS  Google Scholar 

  49. R. Galante, D. Ghisleni, P. Paradiso, V.D. Alves, T.J.A. Pinto, R. Colaço, and A.P. Serro: Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng., C 78, 389 (2017).

    Article  CAS  Google Scholar 

  50. M.L. Lee, H.L. Kim, C.H. Kim, S.H. Lee, J.K. Kim, S.J. Lee, and J.C. Park: Effects of low temperature hydrogen peroxide gas on sterilization and cytocompatibility of porous poly(D,L-lactic-co-glycolic acid) scaffolds. Surf. Coat. Technol. 202, 5762 (2008).

    Article  CAS  Google Scholar 

  51. S. Fleith, A. Ponche, R. Bareille, J. Amédée, and M. Nardin: Effect of several sterilisation techniques on homogeneous self assembled monolayers. Colloids Surf., B 44, 15 (2005).

    Article  CAS  Google Scholar 

  52. G.R. Holyak, S. Wang, Y. Liu, and T.D. Bunch: Toxic effects of ethylene oxide residues on bovine embryos. Toxicol. In Vitro 108, 33 (1996).

    Article  Google Scholar 

  53. R. França, A.M. Doris, T.D. Samani, C.L. Tien, M.A. Mateescu, L. Yahia, and E. Sacher: The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan. J. Biomed. Mater. Res., Part B 101, 1444 (2013).

    Article  CAS  Google Scholar 

  54. C. Yavuz, S.N.B. Oliaei, and O.S. Celikta: Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristic. J. Supercrit. Fluids 107, 114 (2016).

    Article  CAS  Google Scholar 

  55. A.L.R. Ribeiro, P. Hammer, L.G. Vaz, and L.A. Rocha: Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomed. Mater. 8, 65005 (2013).

    Article  CAS  Google Scholar 

  56. M.M. López, J. Fauré, M.I.E. Cabrera, and M.E.C. García: Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications. Mater. Sci. Eng., B 206, 30 (2016).

    Article  CAS  Google Scholar 

  57. J. Szewczenko, P.M. Grygiel, W. Walke, K. Nowinska, J. Granieczny, M. Kaczmarek, and J. Marciniak: Corrosion resistance of Ti6Al4V alloy in modified SBF environments. Key Eng. Mater. 687, 79 (2015).

    Article  Google Scholar 

  58. M. Kiel-Jamrozik, J. Szewczenko, M. Basiaga, and K. Nowińska: Technological capabilities of surface layers formation on implant made of Ti–6Al–4V ELI alloy. Acta Bioeng. Biomech. 17, 31 (2016).

    Google Scholar 

  59. Z. Paszenda, W. Walke, and S. Jadacka: Electrochemical investigations of Ti6Al4V and Ti6Al7Nb alloys used on implants in bone surgery. J. Achiev. Mater. Manuf. Eng. 38, 24 (2010).

    Google Scholar 

  60. M. Basiaga, W. Walke, Z. Paszenda, and A. Kajzer: The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium grade 4. Mater. Tehnol. 50, 153 (2016).

    Article  CAS  Google Scholar 

  61. C. García, S. Ceré, and A. Durán: Bioactive coatings deposited on titanium alloys. J. Non-Cryst. Solids 352, 3488 (2006).

    Article  CAS  Google Scholar 

  62. Á. Györgyey, K. Ungvári, and G. Kecskeméti: Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater. Sci. Eng., C 33, 4251 (2013).

    Article  CAS  Google Scholar 

  63. F. Likibi, B. Jiang, and B. Li: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).

    Article  CAS  Google Scholar 

  64. C. Wirth, B. Grosgogeat, N. Jaffrezic-Renault, and L. Ponsonnet: Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: Roughness and or chemistry? Mater. Sci. Eng., C 28, 990 (2008).

    Article  CAS  Google Scholar 

  65. R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, and B.D. Boyan: The effects of combined micron/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395 (2011).

    Article  CAS  Google Scholar 

  66. B.S. Moon, S. Kim, H.E. Kim, and T.S. Jang: Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Mater. Sci. Eng., C 73, 90 (2017).

    Article  CAS  Google Scholar 

  67. L. Zhao, S. Mei, and W. Wang: The role of sterilization in the cytocompatibility of titania nanotubes. Biomaterials 31, 2055 (2010).

    Article  CAS  Google Scholar 

  68. J.Y. Martin, Z. Schwartz, T.W. Hummert, D.M. Schraub, J. Simpson, J.R.J. Lankford, D.D. Dean, D.L. Cochran, and B.D. Boyan: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J. Biomed. Mater. Res. 29, 389 (1995).

    Article  CAS  Google Scholar 

  69. S. Sharma, S. Bano, and A.S. Ghosh: Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine 12, 1193 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their gratitude to CNPq (Project PVE 401211/2014-2), CAPES, UFRGS, UCS, Esterilizare RS/Brazil and hospital Pompéia RS/Brazil for the investment and support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela K. Kerstner Baldin.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, E.K.K., Garcia, C., Henriques, J.A.P. et al. Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy. Journal of Materials Research 33, 161–177 (2018). https://doi.org/10.1557/jmr.2017.429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.429

Navigation