Skip to main content

Advertisement

Log in

3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing technology is a promising method for bone tissue engineering applications. For enhanced bone regeneration, it is important to have printable ink materials with appealing properties such as construct interconnectivity, mechanical strength, controlled degradation rates, and the presence of bioactive materials. In this respect, we develop a composite ink composed of polycaprolactone (PCL), poly(D,L-lactide-co-glycolide) (PLGA), and hydroxyapatite particles (HAps) and 3D print it into porous constructs. In vitro study revealed that composite constructs had higher mechanical properties, surface roughness, quicker degradation profile, and cellular behaviors compared to PCL counterparts. Furthermore, in vivo results showed that 3D-printed composite constructs had a positive influence on bone regeneration due to the presence of newly formed mineralized bone tissue and blood vessel formation. Therefore, 3D printable ink made of PCL/PLGA/HAp can be a highly useful material for 3D printing of bone tissue constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D. Tang, R.S. Tare, L.Y. Yang, D.F. Williams, K.L. Ou, and R.O. Oreffo: Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016).

    CAS  Google Scholar 

  2. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.H. Kang, and S.K. Kim: Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 72, 269–281 (2015).

    CAS  Google Scholar 

  3. C. Gao, Y. Deng, P. Feng, Z. Mao, P. Li, B. Yang, J. Deng, Y. Cao, C. Shuai, and S. Peng: Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15, 4714–4732 (2014).

    Google Scholar 

  4. A. Mediero, T. Wilder, M. Perez-Aso, and B.N. Cronstein: Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J. 29, 1577–1590 (2015).

    CAS  Google Scholar 

  5. H. Semyari, M. Rajipour, S. Sabetkish, N. Sabetkish, F.M. Abbas, and A.M. Kajbafzadeh: Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: An animal study. Cell Tissue Banking 17, 69–83 (2016).

    CAS  Google Scholar 

  6. N. Shadjou and M. Hasanzadeh: Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J. Biomed. Mater. Res., Part A 103, 3703–3716 (2015).

    CAS  Google Scholar 

  7. J. Kim, S. McBride, A. Donovan, A. Darr, M.H.R. Magno, and J.O. Hollinger: Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model. Biomed. Mater. 10, 035001 (2015).

    Google Scholar 

  8. S. Shi, W.B. Jiang, T.X. Zhao, K.E. Aifantis, H. Wang, L. Lin, Y.B. Fan, Q.L. Feng, F.Z. Cui, and X.M. Li: The application of nanomaterials in controlled drug delivery for bone regeneration. J. Biomed. Mater. Res., Part A 103, 3978–3992 (2015).

    CAS  Google Scholar 

  9. M. Heller, H.K. Bauer, E. Goetze, M. Gielisch, I.T. Ozbolat, K.K. Moncal, E. Rizk, H. Seitz, M. Gelinsky, H.C. Schroder, X.H. Wang, W.E. Muller, and B. Al-Nawas: Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration. Int. J. Comput. Dent. 19, 301–321 (2016).

    Google Scholar 

  10. A.C. Vural, S. Odabas, P. Korkusuz, A.S.Y. Saglam, E. Bilgic, T. Cavusoglu, E. Piskin, and I. Vargel: Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif. Cells, Nanomed., Biotechnol. 45, 544–550 (2017).

    CAS  Google Scholar 

  11. J. van der Stok, D. Lozano, Y.C. Chai, S.A. Yavari, A.P.B. Coral, J.A.N. Verhaar, E. Gomez-Barrena, J. Schrooten, H. Jahr, A.A. Zadpoor, P. Esbrit, and H. Weinans: Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats. Tissue Eng., Part A 21, 1495–1506 (2015).

    Google Scholar 

  12. P. Ni, Q.X. Ding, M. Fan, J.F. Liao, Z.Y. Qian, J.C. Luo, X.Q. Li, F. Luo, Z.M. Yang, and Y.Q. Wei: Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials 35, 236–248 (2014).

    CAS  Google Scholar 

  13. T. Gredes, F. Kunath, T. Gedrange, and C. Kunert-Keil: Bone regeneration after treatment with covering materials composed of flax fibers and biodegradable plastics: A histological study in rats. BioMed Res. Int. 5146285 (2016).

  14. S.C. Cox, J.A. Thornby, G.J. Gibbons, M.A. Williams, and K.K. Mallick: 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng., C 47, 237–247 (2015).

    CAS  Google Scholar 

  15. C.T. Kao, C.C. Lin, Y.W. Chen, C.H. Yeh, H.Y. Fang, and M.Y. Shie: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng., C 56, 165–173 (2015).

    CAS  Google Scholar 

  16. B. Holmes, K. Bulusu, M. Plesniak, and L.G. Zhang: A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27, 064001 (2016).

    Google Scholar 

  17. M.O. Wang, C.E. Vorwald, M.L. Dreher, E.J. Mott, M.H. Cheng, A. Cinar, H. Mehdizadeh, S. Somo, D. Dean, E.M. Brey, and J.P. Fisher: Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 27, 138–144 (2015).

    CAS  Google Scholar 

  18. S.J. Lee, D. Lee, T.R. Yoon, H.K. Kim, H.H. Jo, J.S. Park, J.H. Lee, W.D. Kim, I.K. Kwon, and S.A. Park: Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 40, 182–191 (2016).

    CAS  Google Scholar 

  19. F. Pati, T.H. Song, G. Rijal, J. Jang, S.W. Kim, and D.W. Cho: Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37, 230–241 (2015).

    CAS  Google Scholar 

  20. S. Bose, S. Vahabzadeh, and A. Bandyopadhyay: Bone tissue engineering using 3D printing. Mater. Today 16, 496–504 (2013).

    CAS  Google Scholar 

  21. M. Hospodiuk, K.K. Moncal, M. Dey, and I.T. Ozbolat: Extrusion-based biofabrication in tissue engineering and regenerative medicine. In: 3D Printing and Biofabrication, A. Ovsianikov, J. Yoo, V. Mironov eds. (Springer International Publishing, 2016); pp. 1–27.

  22. V.L. Tsang and S.N. Bhatia: Three-dimensional tissue fabrication. Adv. Drug Delivery Rev. 56, 1635–1647 (2004).

    Google Scholar 

  23. S.J. Heo, S.E. Kim, J. Wei, D.H. Kim, Y.T. Hyun, H.S. Yun, H.K. Kim, T.R. Yoon, S.H. Kim, S.A. Park, J.W. Shin, and J.W. Shin: In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue Eng., Part A 15, 977–989 (2009).

    CAS  Google Scholar 

  24. B.D. Ulery, L.S. Nair, and C.T. Laurencin: Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49, 832–864 (2011).

    CAS  Google Scholar 

  25. D.Y. Kwon, J.S. Kwon, S.H. Park, J.H. Park, S.H. Jang, X.Y. Yin, J.H. Yun, J.H. Kim, B.H. Min, J.H. Lee, W.D. Kim, and M.S. Kim: A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci. Rep. 5, 12721 (2015).

    CAS  Google Scholar 

  26. J.B. Lee, S.E. Kim, D.N. Heo, I.K. Kwon, and B.J. Choi: In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromol. Res. 18, 1195–1202 (2010).

    CAS  Google Scholar 

  27. G.B. Wei and P.X. Ma: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25, 4749–4757 (2004).

    CAS  Google Scholar 

  28. X. Li, S. Zhang, X. Zhang, S. Xie, G. Zhao, and L. Zhang: Biocompatibility and physicochemical characteristics of poly(ε-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Des. 114, 149–160 (2017).

    CAS  Google Scholar 

  29. I.T. Ozbolat, H. Chen, and Y. Yu: Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integrated Manuf. 30, 295–304 (2014).

    Google Scholar 

  30. V. Ozbolat, M. Dey, B. Ayan, A. Povilianskas, M.C. Demirel, and I.T. Ozbolat: 3D printing of PDMS improves its mechanical and cell adhesion properties. ACS Biomater. Sci. Eng. 4, 682–693 (2018).

    CAS  Google Scholar 

  31. J. Yang, A.R. Webb, S.J. Pickerill, G. Hageman, and G.A. Ameer: Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 27, 1889–1898 (2006).

    CAS  Google Scholar 

  32. L. Zhang and C. Chan: Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Visualized Exp. 37, e1852 (2010).

    Google Scholar 

  33. B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim: Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative study. World J. Environ. Eng. 3, 95–110 (2015).

    Google Scholar 

  34. J. Zhang, Y. Liu, R.F. Luo, S. Chen, X. Li, S.H. Yuan, J. Wang, and N. Huang: In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings. Appl. Surf. Sci. 328, 154–162 (2015).

    CAS  Google Scholar 

  35. L. Berzina-Cimdina and N. Borodajenko: Research of calcium phosphates using Fourier transform infrared spectroscopy. Infrared Spectrosc.: Mater. Sci., Eng. Technol. (InTech, 2012); pp. 123–148.

  36. G. Rhodes: Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models, 3rd ed. (Elsevier, 2010); pp. 61–306.

  37. L. Mu and S.S. Feng: A novel controlled release formulation for the anticancer drug paclitaxel (taxol (R)): PLGA nanoparticles containing vitamin E TPGS. J. Controlled Release 86, 33–48 (2013).

    Google Scholar 

  38. M.A. Velasco, C.A. Narvaez-Tovar, and D.A. Garzon-Alvarado: Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res. Int. 729076 (2015).

  39. I.T. Ozbolat and M. Hospodiuk: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016).

    CAS  Google Scholar 

  40. I.T. Ozbolat, K.K. Moncal, and H. Gudapati: Evaluation of bioprinter technologies. Addit. Manuf. 13, 179–200 (2017).

    CAS  Google Scholar 

  41. M. Hospodiuk, M. Dey, D. Sosnoski, and I.T. Ozbolat: The bioink: A comprehensieve review on bioprintable materials. Biotechnol. Adv. 35, 217–239 (2017).

    CAS  Google Scholar 

  42. H.J. Sung, C. Meredith, C. Johnson, and Z.S. Galis: The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25, 5735–5742 (2004).

    CAS  Google Scholar 

  43. N.T. Hiep, H. Chan Khon, N.D. Hai, L. Byong-Taek, V.V. Toi, and L.T. Hung: Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J. Biomater. Sci., Polym. Ed. 28, 864–878 (2017).

    Google Scholar 

  44. A.C. Jones, C.H. Arns, A.P. Sheppard, D.W. Hutmacher, B.K. Milthorpe, and M.A. Knackstedt: Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28, 2491–2504 (2007).

    CAS  Google Scholar 

  45. S. D’Mello, K. Atluri, S.M. Geary, L. Hong, S. Elangovan, and A.K. Salem: Bone regeneration using gene-activated matrices. AAPS J. 19, 43–53 (2017).

    Google Scholar 

  46. D.N. Heo, N.J. Castro, S.J. Lee, H. Noh, W. Zhu, and L.G. Zhang: Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 9, 5055–5062 (2017).

    CAS  Google Scholar 

  47. A.N. Leberfinger, K.K. Moncal, D.J. Ravnic, and I.T. Ozbolat: 3D printing for cell therapy applications. In: Cell Therapy, D. Emerich, G. Orive eds. (Humana Press, Cham, 2017); pp. 227–248.

    Google Scholar 

  48. B.P. Hung, B.A. Naved, E.L. Nyberg, M. Dias, C.A. Holmes, J.H. Elisseeff, A.H. Dorafshar, and W.L. Grayson: Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater. Sci. Eng. 2, 1806–1816 (2016).

    CAS  Google Scholar 

  49. L. Dong, S.J. Wang, X.R. Zhao, Y.F. Zhu, and J.K. Yu: 3D-printed poly(epsilon-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7, 13412 (2017).

    Google Scholar 

  50. P. Datta, V. Ozbolat, B. Ayan, A. Dhawan, and I.T. Ozbolat: Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng. 114, 2424–2431 (2017).

    CAS  Google Scholar 

  51. I.T. Ozbolat, W. Peng, and V. Ozbolat: Application areas of 3D bioprinting. Drug Discovery Today 21, 1257–1271 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation Award No. 1600118 and Osteology Foundation Award No. 15-042. The authors are thankful to Dr. Wu Yang for his assistance with the histology study. Dr. Veli Ozbolat acknowledges the support from the International Postdoctoral Research Scholarship Program (BIDEP 2219) of the Scientific and Technological Research Council of Turkey (TUBITAK). The authors are also thankful to Materials Research Institute at the Pennsylvania State University in supporting the X-ray scattering experiment. The authors also thank Dr. Abhishek Shetty from Anton-Paar USA, Inc. for his assistance with the rheology experiments. The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim T. Ozbolat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncal, K.K., Heo, D.N., Godzik, K.P. et al. 3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. Journal of Materials Research 33, 1972–1986 (2018). https://doi.org/10.1557/jmr.2018.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.111

Navigation