Skip to main content
Log in

Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pure and magnesium-doped TiO2 nanoparticles (NPs) of three different concentrations (3, 6, and 9 mol%) were synthesized by a simple, cost effective solvothermal microwave irradiation method and characterized by XRD, EDAX, transmission electron microscopy (TEM), and UV-Vis diffuse reflection spectroscopy. X-ray diffraction studies performed on synthesized NPs have shown that the anatase phase is preserved after doping and the dopant does not change the crystalline phase (anatase) of the parent material (TiO2). TEM results revealed that the particle size was significantly reduced with increasing dopant concentration and are spherical in shape. For the J-V measurements, the devices were subjected to the simulated sun light of 100 mW/cm2 irradiation with a working electrode area of 0.25 cm2 (0.5 × 0.5 cm). The results show that the dye-sensitized solar cell based on a 3 mol% Mg-doped TiO2 electrode achieved a photoelectrical conversion efficiency of 7.36% which is perceptibly increased by 17.6% than undoped TiO2 (6.26%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. G. Pfaff and P. Reynders: Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963 (1999).

    Article  CAS  Google Scholar 

  2. A.W. Harrison and M.R. Walton: Radiative cooling of TiO2 white paint. Sol. Energy 20, 185 (1978).

    Article  Google Scholar 

  3. A. Salvador, M.C. Pascual-Marti, J.R. Adell, A. Requeni, and J.G. March: Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen cream. J. Pharm. Biomed. Anal. 22, 301 (2000).

    Article  CAS  Google Scholar 

  4. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  5. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  6. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).

    Article  CAS  Google Scholar 

  7. B. O’Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  8. M. Grätzel: Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003).

    Article  CAS  Google Scholar 

  9. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).

    Article  CAS  Google Scholar 

  10. T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218 (2004).

    Article  CAS  Google Scholar 

  11. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, and J.R. Durrant: Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475 (2003).

    Article  CAS  Google Scholar 

  12. M. Grätzel: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164, 3 (2004).

    Article  CAS  Google Scholar 

  13. N. Serpone, D. Lawless, and R. Khairutdinov: Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646 (1995).

    Article  CAS  Google Scholar 

  14. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, and Y. Li: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).

    Article  CAS  Google Scholar 

  15. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, and J. Zhang: Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888 (2012).

    Article  CAS  Google Scholar 

  16. C. Zhang, S. Chen, L. Mo, Y. Huang, H. Tian, and L. Hu: Charge recombination and band-edge shift in the dye-sensitized Mg2+-doped TiO2 solar cells. J. Phys. Chem. C 115, 16418 (2011).

    Article  CAS  Google Scholar 

  17. H.S. Jung, J.K. Lee, M. Nastasi, S.W. Lee, J.Y. Kim, and J.S. Park: Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21, 10332 (2005).

    Article  CAS  Google Scholar 

  18. G.R. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. Jayaweera, and K. Tennakone: Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: Enhancement of the efficiency. J. Photochem. Photobiol. Chem. 164, 183 (2004).

    Article  CAS  Google Scholar 

  19. J. Navas, T. Aguilar, C. Fernández-Lorenzo, R. Alcántara, D.L.M. De Santos, and A. Sánchez-Coronilla: Cu(II)-doped TiO2 nanoparticles as photoelectrode in dye-sensitized solar Cells: Improvement of open-circuit voltage and a light scattering effect. Sci. Adv. Mater. 6, 473 (2014).

    Article  CAS  Google Scholar 

  20. S.N.R. Inturi, T. Boningari, M. Suidan, and P.G. Smirniotis: Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal., B 144, 333 (2014).

    Article  CAS  Google Scholar 

  21. X. Zhang, F. Liu, Q.L. Huang, G. Zhou, and Z.S. Wang: Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J. Phys. Chem. C 115, 12665 (2011).

    Article  CAS  Google Scholar 

  22. K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya: Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3−/Br redox mediator with a high open-circuit photovoltage of 1.21 V. Chem. Commun. 49, 179 (2013).

    Article  CAS  Google Scholar 

  23. T. Ma, M. Akiyama, E. Abe, and I. Imai: High-efficiency dyesensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543 (2005).

    Article  CAS  Google Scholar 

  24. Q. Sun, J. Zhang, P. Wang, J. Zheng, X. Zhang, Y. Cui, J. Feng, and Y. Zhu: Sulfur-doped TiO2 nanocrystalline photoanodes for dyesensitized solar cells. J. Renew. Sustain. Energy 4, 023104 (2012).

    Article  CAS  Google Scholar 

  25. Q. Hou, Y. Zheng, J.F. Chen, W. Zhou, J. Deng, and X. Tao: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. J. Mater. Chem. 21, 3877 (2011).

    Article  CAS  Google Scholar 

  26. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, and S. Dai: Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping. J. Mater. Chem. 21, 863 (2011).

    Article  CAS  Google Scholar 

  27. S. Iwamoto, Y. Sazanami, M. Inoue, T. Inoue, T. Hoshi, K. Shigaki, M. Kaneko, and A. Maenosono: Fabrication of dye-sensitized solar cells with an open-circuit photovoltage of 1 V. ChemSusChem 1, 401 (2008).

    Article  CAS  Google Scholar 

  28. Q. Liu: Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim. Acta 129, 459 (2014).

    Article  CAS  Google Scholar 

  29. J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, and Z. Zou: Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 114, 18396 (2010).

    Article  CAS  Google Scholar 

  30. S. Yahav, S. Rühle, S. Greenwald, H.N. Barad, M. Shalom, and A. Zaban: Strong efficiency enhancement of dye-sensitized solar cells using a La-modified TiCl4 treatment of mesoporous TiO2 electrodes. J. Phys. Chem. C 115, 21481 (2011).

    Article  CAS  Google Scholar 

  31. S.H. Tamboli, R.B. Patil, S.V. Kamat, V. Puri, and R.K. Puri: Modification of optical properties of MgO thin films by vapour chopping. J. Alloys Compd. 477, 855 (2009).

    Article  CAS  Google Scholar 

  32. J. Manju and S. Joseph Jawhar: Facile synthesis and characterization of Ti(1−x)CuxO2 nanoparticles for high efficiency dye sensitized solar cell applications. Opt. Mater. 69, 119 (2017).

    Article  CAS  Google Scholar 

  33. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  34. A. Riaz, H. Qi, Y. Fang, J. Xu, C. Zhou, Z. Jin, Z. Hong, M. Zhi, and Y. Liu: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).

    Article  CAS  Google Scholar 

  35. Y. Yan, T. Chen, Y. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).

    Article  CAS  Google Scholar 

  36. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 1, 2764 (2017).

    Article  CAS  Google Scholar 

  37. R.S.S. Saravanan, D. Pukazhselvan, and C.K. Mahadevan: Investigation on the synthesis and quantum confinement effects of pure and Mn2+ added Zn1−xCdxS nanocrystals. J. Alloys Compd. 509, 4065 (2011).

    Article  CAS  Google Scholar 

  38. R.S.S. Saravanan, M. Meena, D. Pukazhselvan, and C.K. Mahadevan: Structural, optical and electrical characterization of Mn2+ and Cd2+ doped/co-doped PbS nanocrystals. J. Alloys Compd. 627, 69 (2015).

    Article  CAS  Google Scholar 

  39. S.D. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, and K. Brooks: Self-organization of TiO2 nanoparticles in thin films. Chem. Mater. 10, 2419 (1998).

    Article  CAS  Google Scholar 

  40. M.S. Anmadi and A. Fattahi: On the binding of Mg2+, Ca2+, Zn2+, and Cu+ metal cations to 2′-deoxyguanosine: Changes on sugar puckering and strength of the glycosidic bond. Sci. Iran. 18, 1343 (2011).

    Article  CAS  Google Scholar 

  41. T.J. Holland and S.A. Redfern: Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 61, 65 (1997).

    Article  CAS  Google Scholar 

  42. A. Patterson: The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  43. G. Williamson and W. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  44. A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M.A.G. Soler, and A. Agarwal: Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J. Alloy. Comp. 622, 37 (2015).

    Article  CAS  Google Scholar 

  45. E. Johnson: Semiconductors and Semimetals (Academic Press, New York, 1967).

    Google Scholar 

  46. P. Chetri, P. Basyach, and A. Choudhury: Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: An experimental and DFT investigation. Chem. Phys. 434, 1 (2014).

    Article  CAS  Google Scholar 

  47. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walckand, and J.T. Yates: The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B 108, 52 (2004).

    Article  CAS  Google Scholar 

  48. A.N. Enyashin and G. Seifert: Structure, stability and electronic properties of TiO2 nanostructures. Phys. Status Solidi 242, 1361 (2005).

    Article  CAS  Google Scholar 

  49. K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, and G. Madras: Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900 (2004).

    Article  CAS  Google Scholar 

  50. R. López and R. Gómez: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol–Gel Sci. Technol. 61, 1 (2011).

    Article  CAS  Google Scholar 

  51. K. Madhusudan Reddy, S.V. Manorama, and A. Ramachandra Reddy: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2003).

    Article  Google Scholar 

  52. J. Tauc, R. Grigorovici, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1996).

    Article  Google Scholar 

  53. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, and M.H. Cho: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637 (2014).

    Article  CAS  Google Scholar 

  54. M. Pal, U. Pal, J.M.G.Y. Jiménez, and F. Pérez-Rodríguez: Effects of crystallization and dopawnt concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

  55. A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, and A. Agarwal: Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd. 549, 114 (2013).

    Article  CAS  Google Scholar 

  56. M.A. Gondala, A.M. Ilyas, U. Baiga, and T.A. Fasasia: Facile synthesis of silicon carbide–titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification. Appl. Surf. Sci. 378, 8 (2016).

    Article  CAS  Google Scholar 

  57. Y. Xie, N. Huang, S. You, Y. Liu, B. Sebo, and L. Liang: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. J. Power Sources 224, 168 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are cordially thankful to Dr. V.N. Praveen and Dr. Sakthi Sudar Saravanan for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janoha Manju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manju, J., Jawhar, S.M.J. Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. Journal of Materials Research 33, 1534–1542 (2018). https://doi.org/10.1557/jmr.2018.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.115

Navigation