Skip to main content
Log in

High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a high-temperature low-cycle fatigue (LCF) behavior of a newly developed austenitic oxide dispersion strengthened (ODS) steel is investigated. The LCF tests were performed in air at 650 °C under three different strain amplitudes (±0.4, ±0.5, and ±0.7%) with a nominal strain rate of 10−3 s−1. The measured cyclic stress response showed four distinct stages which include short initial stable cyclic response followed by a prolonged hardening with subsequent short saturation and finally crack initiation and growth stage. The rate of hardening and the duration of stages are a function of applied strain amplitude. Microstructural investigations were carried out to shed light on the deformation mechanisms. After cycling, the overall microstructure appears stable without any modifications in grain shape and size. In addition, twinning and stacking fault fractions remain unchanged. However, cyclic hardening is an aftermath of dislocation multiplication whose rate is also a function of applied strain amplitude. Furthermore, oxide particles, as well as fine grains, inhibit strain localization by restricting three-dimensional dislocation structure formation that are associated with the development of extrusions and intrusions and are readily observed in conventional austenitic non-ODS steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: Mechanical and microstructural properties of a hipped RAFM ODS-steel. J. Nucl. Mater. 307–311, 769 (2002).

    Article  Google Scholar 

  2. S. Ukai and M. Fujiwara: Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307–311, 749 (2002).

    Article  Google Scholar 

  3. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J. Nucl. Mater. 341, 103 (2005).

    Article  CAS  Google Scholar 

  4. A. Chauhan, M. Walter, and J. Aktaa: Towards improved ODS steels: A comparative high-temperature low-cycle fatigue study. Fatig. Fract. Eng. Mater. Struct. 40, 2128 (2017).

    Article  CAS  Google Scholar 

  5. A. Chauhan, J. Hoffmann, D. Litvinov, and J. Aktaa: High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1-pure fatigue, microstructure evolution and damage characteristics. Mater. Sci. Eng., A 707, 207 (2017).

    Article  CAS  Google Scholar 

  6. Y. Xu, Z. Zhou, M. Li, and P. He: Fabrication and characterization of ODS austenitic steels. J. Nucl. Mater. 417, 283 (2011).

    Article  CAS  Google Scholar 

  7. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  8. C. Balázsi, F. Gillemot, M. Horváth, F. Wéber, K. Balázsi, F.C. Sahin, Y. Onüralp, and Á. Horváth: Preparation and structural investigation of nanostructured oxide dispersed strengthened steels. J. Mater. Sci. 46, 4598 (2011).

    Article  Google Scholar 

  9. T. Gräning, M. Rieth, J. Hoffmann, and A. Möslang: Production, microstructure and mechanical properties of two different austenitic ODS steels. J. Nucl. Mater. 487, 348 (2017).

    Article  Google Scholar 

  10. L. Straßberger, A. Chauhan, T. Gräning, S. Czink, and J. Aktaa: High-temperature low-cycle fatigue behavior of novel austenitic ODS steels. Int. J. Fatig. 93, 194 (2016).

    Article  Google Scholar 

  11. T. Gräning: Herstellung, Charakterisierung Und Optimierung von Austenitischen ODS Stählen (Karlsruher Institut für Technologie, Deutschland, 2017).

    Google Scholar 

  12. Y. Miao, K. Mo, Z. Zhou, X. Liu, K-C. Lan, G. Zhang, M.K. Miller, K.A. Powers, Z-G. Mei, J-S. Park, J. Almer, and J.F. Stubbins: On the microstructure and strengthening mechanism in oxide dispersion-strengthened 316 steel: A coordinated electron microscopy, atom probe tomography and in situ synchrotron tensile investigation. Mater. Sci. Eng., A 639, 585 (2015).

    Article  CAS  Google Scholar 

  13. A. Deschamps, F. de Geuser, J. Malaplate, and D. Sornin: When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?J. Nucl. Mater. 482, 83 (2016).

    Article  CAS  Google Scholar 

  14. W. Ramberg and W.R. Osgood: Description of Stress-Strain Curves by Three Parameters, Technical note no. 503, National Advisory Committee on Aeronautics (NACA, Washington, DC, 1943).

    Google Scholar 

  15. L.F. Coffin: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931 (1954).

    CAS  Google Scholar 

  16. S.S. Manson: Behavior of Materials under Conditions of Thermal Stress, Technical note no. 1170, National Advisory Committee for Aeronautics (NACA, Cleveland, OH, 1954).

    Google Scholar 

  17. V.S. Srinivasan: Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach. Int. J. Fatig. 25, 1327 (2003).

    Article  CAS  Google Scholar 

  18. T.S. Byun: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 51, 3063 (2003).

    Article  CAS  Google Scholar 

  19. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  20. W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, and Z.F. Zhang: Deformation induced microtwins and stacking faults in aluminum single crystal. Phys. Rev. Lett. 101, 115505 (2008).

    Article  CAS  Google Scholar 

  21. M. Gerland and P. Violan: Secondary cyclic hardening and dislocation structures in type 316 stainless steel at 600 °C. Mater. Sci. Eng. 84, 23 (1986).

    Article  CAS  Google Scholar 

  22. J. Man, K. Obrtlík, and J. Polák: Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 1295 (2009).

    Article  CAS  Google Scholar 

  23. V.C. Nardone and J.K. Tien: Pinning of dislocations on the departure side of strengthening dispersoids. Scr. Metall. 17, 467 (1983).

    Article  CAS  Google Scholar 

  24. J.K. Tien, V.C. Nardone, and D.E. Matejczyk: The threshold stress and departure side pinning of dislocations by dispersoids. Acta Metall. 32, 1509 (1984).

    Article  Google Scholar 

  25. B. Reppich: On the attractive particle-dislocation interaction in dispersion-strengthened material. Acta Mater. 46, 61 (1998).

    Article  CAS  Google Scholar 

  26. E. Thiele, C. Holste, and R. Klemm: Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel. Z. Metallkd. 93, 730 (2002).

    Article  CAS  Google Scholar 

  27. A. Chauhan, F. Bergner, A. Etienne, J. Aktaa, Y. de Carlan, C. Heintze, D. Litvinov, M. Hernandez-Mayoral, E. Oñorbe, B. Radiguet, and A. Ulbricht: Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe–9% Cr and Fe–14% Cr extruded bars. J. Nucl. Mater. 495, 6 (2017).

    Article  CAS  Google Scholar 

  28. A. Chauhan, D. Litvinov, and J. Aktaa: Deformation and damage mechanisms of a bimodal 12Cr-ODS steel under high-temperature cyclic loading. Int. J. Fatig. 93, 1 (2016).

    Article  CAS  Google Scholar 

  29. I. Kubena and T. Kruml: Fatigue life and microstructure of ODS steels. Eng. Fract. Mech. 103, 39 (2013).

    Article  Google Scholar 

  30. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  31. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena. (Pergamon Press, Oxford, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Litvinov, D., Gräning, T. et al. High-temperature low-cycle fatigue behavior and microstructural evolution of an improved austenitic ODS steel. Journal of Materials Research 33, 1814–1821 (2018). https://doi.org/10.1557/jmr.2018.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.136

Navigation