Skip to main content
Log in

Breakthrough applications of high-entropy materials

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The concept of high-entropy alloys has been extended to ceramics, polymers, and composites. “High-entropy materials (HEMs)” are named to cover all these materials. Recently, HEMs has become a new emerging field through the collective efforts of many researchers. Basically, high mixing entropy can enhance the formation of solution-type phases for alloys, ceramics, and composites at high temperatures, and in general leads to simpler microstructure. Large degrees of freedom in composition design as well as process design have been found to provide a wide range of microstructure and properties for applications. There are many opportunities for HEMs to overcome the bottlenecks of conventional materials. In this article, several possible breakthrough applications are pointed out and emphasized for turbine blades, thermal spray bond coatings, high-temperature molds and dies, sintered carbides for cutting tools, hard coatings for cutting tools, hardfacings, and radiation-damage resistant materials. In addition, more possible breakthrough examples are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, and S. Ranganathan: High Entropy Alloys (Butterworth-Heinemann, Boston, 2014).

    Google Scholar 

  2. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications (Springer International Publishing, Cham, 2016).

    Book  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  4. J.W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).

    Article  CAS  Google Scholar 

  5. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  6. M.H. Tsai and J.W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).

    Article  Google Scholar 

  7. C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, and J.W. Yeh: Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 21, 299 (2017).

    Article  CAS  Google Scholar 

  8. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  9. Y. Shi, B. Yang, and P. Liaw: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).

    Article  Google Scholar 

  10. R.C. Reed: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  11. R.L. Kennedy: Allvac®718Plus™, Superalloy for the next forty years. In Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed. (TMS, Warrendale, Pennsylvania, 2005), pp. 1

    Google Scholar 

  12. K. Kawagishi, A.C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, and H. Harada: Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. In Superalloys 2012 (John Wiley & Sons, 2012), pp. 189.

  13. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).

    Article  CAS  Google Scholar 

  14. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).

    Article  CAS  Google Scholar 

  15. T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh, and S.R. Jian: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 12658 (2017).

    Article  Google Scholar 

  16. N.P. Padture, M. Gell, and E.H. Jordan: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  17. W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, and K. Shimoda: A heat-resistant NiCo0.6Fe0.2Cr1.5SiAlTi0.2 overlay coating for high-temperature applications. J. Electrochem. Soc. 163, C752 (2016).

    Article  CAS  Google Scholar 

  18. W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, and Y.S. Chang: Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride. J. Electrochem. Soc. 160, C531 (2013).

    Article  CAS  Google Scholar 

  19. T. Abram and S. Ion: Generation-IV nuclear power: A review of the state of the science. Energy Policy 36, 4323 (2008).

    Article  Google Scholar 

  20. K.L. Murty and I. Charit: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189 (2008).

    Article  CAS  Google Scholar 

  21. Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granberg, and F. Djurabekova: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21 (5), 221 (2017).

    Article  CAS  Google Scholar 

  22. K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, and H. Bei: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 119, 65 (2016).

    Article  CAS  Google Scholar 

  23. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).

    Article  CAS  Google Scholar 

  24. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).

    Article  CAS  Google Scholar 

  25. T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).

    Article  CAS  Google Scholar 

  26. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  27. Z. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).

    Article  CAS  Google Scholar 

  28. R.C. Lin, T.K. Lee, D.H. Wu, and Y.C. Lee: A study of thin film resistors prepared using Ni–Cr–Si–Al–Ta high entropy alloy. Adv. Mater. Sci. Eng. 2015, 1 (2015).

    Google Scholar 

  29. D. Bérardan, S. Franger, A.K. Meena, and N. Dragoe: Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by the “High Entropy Materials Center” from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and from the Project MOST 107-3017-F-007-003 by Ministry of Science and Technology (MOST) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jien-Wei Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, JW., Lin, SJ. Breakthrough applications of high-entropy materials. Journal of Materials Research 33, 3129–3137 (2018). https://doi.org/10.1557/jmr.2018.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.283

Navigation