Skip to main content
Log in

Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 alloy joints

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AZ31 magnesium alloy sheets were A-TIG-welded through a coating of flux, which contained different ratios of Ce powder and nano-sized SiC as reinforcement particles and equal mass of TiO2 as activating fluxes. The microscopic analysis results illustrated that relatively low content of Ce in the reinforcement particles caused the formation of Al3Ce precipitates and refined the grains of α-Mg phase together with β-Mg17Al12 and SiC particles. The increase in microhardness and ultimate tensile strength of the joints was 6.2% and 19.2%, respectively, when reinforcement particles contain 20 wt% Ce compared to the joints coated without Ce. By studying the electrochemical test results, when using 20 wt% Ce + 80 wt% SiC as reinforcement particles, the corrosion current density was the lowest and the corrosion resistance reached the largest value, reflecting the improvement of corrosion property of the joint affected by Ce element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Ugender, A. Kumar, and A.S. Reddy: Microstructure and mechanical properties of AZ31B magnesium alloy by friction stir welding. Procedia Mater. Sci. 6, 1600 (2014).

    Article  CAS  Google Scholar 

  2. C. Wang, B. Jiang, M. Liu, and Y. Ge: Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy. J. Alloys Compd. 621, 53 (2015).

    Article  CAS  Google Scholar 

  3. F.Y. Shu, Y.M. Sun, H.Y. Zhao, X.G. Song, S.H. Sui, W.X. He, P. He, B. Liu, and B.S. Xu: Microstructural and mechanical inhomogeneity in the narrow-gap weld seam of thick GMA welded Al–Zn–Mg alloy plates. J. Mater. Res. 31, 3948 (2016).

    Article  CAS  Google Scholar 

  4. Y. Morisada, H. Fujii, and X. Ni: Development of simplified active flux tungsten inert gas welding for deep penetration. Mater. Des. 54, 526 (2014).

    Article  CAS  Google Scholar 

  5. L. Liu and H. Sun: Study of flux assisted TIG welding of magnesium alloy with SiC particles in flux. Mater. Res. Innovations 12, 47 (2013).

    Article  Google Scholar 

  6. J. Shen, S. Li, D. Zhai, L. Wen, K. Liu, and Y. Dai: Effects of SiC on the strengthening activated tungsten inert gas (SA-TIG) welded of magnesium alloy. Mater. Manuf. Processes 28, 1240 (2013).

    Article  CAS  Google Scholar 

  7. J. Shen, K. Liu, Y. Li, S.Z. Li, and L.B. Wen: Effects of fluxes on distribution of SiC particles and microstructures and mechanical properties of nanoparticles strengthening A-TIG (NSA-TIG) welded magnesium alloy joints. Sci. Technol. Weld. Joining 18, 404 (2013).

    Article  CAS  Google Scholar 

  8. T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, and Y. Hao: Grain refinement of AZ91D magnesium alloy by SiC. J. Alloys Compd. 496, 218 (2010).

    Article  CAS  Google Scholar 

  9. X. Xie, J. Shen, L. Cheng, Y. Li, and Y. Pu: Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints. Mater. Des. 81, 31 (2015).

    Article  CAS  Google Scholar 

  10. R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, and G. Garcés: Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt% NaCl solution. Corros. Sci. 55, 301 (2012).

    Article  CAS  Google Scholar 

  11. W. Zhang, W. Xiao, F. Wang, and C. Ma: Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. J. Alloys Compd. 684, 8 (2016).

    Article  CAS  Google Scholar 

  12. S. Zhu, M.A. Easton, T.B. Abbott, M.A. Gibson, and J. Nie: The influence of individual rare earth elements (La, Ce, or Nd) on creep resistance of die-cast magnesium alloy AE44. Adv. Eng. Mater. 18, 932 (2016).

    Article  CAS  Google Scholar 

  13. Q. Chen, Z. Zhao, Q. Zhu, G. Wang, and K. Tao: Cerium addition improved the dry sliding wear resistance of surface welding AZ91 alloy. Materials 11, 250 (2018).

    Article  Google Scholar 

  14. E.P. Silva, F. Marques, T.S. Nossa, U. Alfaro, and H.C. Pinto: Impact of Ce-base mischmetal on the microstructure and mechanical behavior of ZK60 magnesium casting alloys. Mater. Sci. Eng., A 723, 306 (2018).

    Article  CAS  Google Scholar 

  15. H. Lin and J. Yan: Optimization of weld bead geometry in the activated GMA welding process via a grey-based Taguchi method. J. Mech. Sci. Technol. 28, 3249 (2014).

    Article  Google Scholar 

  16. X. Gao, J. Dong, and X. Han: Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti6Al4V. Int. J. Adv. Des. Manuf. Technol. 91, 1181 (2016).

    Article  Google Scholar 

  17. T. Zhu, Z.W. Chen, and W. Gao: Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy. Mater. Charact. 59, 1550 (2008).

    Article  CAS  Google Scholar 

  18. L. Shang, I.H. Jung, S. Yue, R. Verma, and E. Essadiqi: An investigation of formation of second phases in microalloyed, AZ31 Mg alloys with Ca, Sr, and Ce. J. Alloys Compd. 492, 173 (2010).

    Article  CAS  Google Scholar 

  19. N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, and M.R. Barnett: Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression. Acta Mater. 60, 218 (2012).

    Article  CAS  Google Scholar 

  20. W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra: Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy. Scr. Mater. 65, 994 (2011).

    Article  CAS  Google Scholar 

  21. C. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho: Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191 (2013).

    Article  CAS  Google Scholar 

  22. M. Zhou, J. Shen, D. Hu, R. Gao, and S. Li: Effects of heat treatment on the activated flux TIG-welded AZ31 magnesium alloy joints. Int. J. Adv. Des. Manuf. Technol. 92, 3983 (2017).

    Article  Google Scholar 

  23. W. Liu, F. Cao, L. Chang, Z. Zhang, and J. Zhang: Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy. Corros. Sci. 51, 1334 (2009).

    Article  CAS  Google Scholar 

  24. T. Cain, S.B. Madden, N. Birbilis, and J.R. Scully: Evidence of the enrichment of transition metal elements on corroding magnesium surfaces using rutherford backscattering spectrometry. J. Electrochem. Soc. 162, C228 (2015).

    Article  CAS  Google Scholar 

  25. X. Liu, Q. Yang, Z. Li, W. Yuan, Y. Zheng, Z. Cui, X. Yang, K.W.K. Yeung, and S. Wu: A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Appl. Surf. Sci. 434, 1101 (2018).

    Article  CAS  Google Scholar 

  26. C. Wang, J. Shen, F. Xie, B. Duan, and X. Xie: A versatile dopamine-induced intermediate layer for polyether imides (PEI) deposition on magnesium to render robust and high inhibition performance. Corros. Sci. 122, 32 (2017).

    Article  CAS  Google Scholar 

  27. J. Zhao, X. Xie, and C. Zhang: Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros. Sci. 114, 146 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is supported by a Science and Technology Project of Beibei district of Chongqing of China (Project No. 2016-27), a foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University of China (Project No. SKLMT-ZZKT-2017M15), and an Industry Joint Technology Innovation Project of Suzhou of China in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Shen, J., Song, H. et al. Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 alloy joints. Journal of Materials Research 33, 4340–4348 (2018). https://doi.org/10.1557/jmr.2018.404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.404

Navigation