Skip to main content
Log in

A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To suppress the interface gap between the cell walls of wood and filled epoxy resin, a green and universal H2O2 or H2O2/HAc steam-modified delignification approach is developed to remove more lignin, thereby generating more pores to be more conveniently backfilled by epoxy resin for highly transparent wood composites. Utilizing the excellent penetration ability of steam, not only different wood species, such as basswood and pine, with different cutting directions but also the thickest (40 mm) and largest (210 × 190 mm) wood samples can be successfully delignified. Compared with the 1.9% lignin content (which is the normal content of delignified wood prepared by solution-based methods) of delignified wood, the as-prepared delignified wood has the lowest lignin content of 0.84% to date. After the infiltration of epoxy resin, not only did the mechanical strength of the 5-mm transparent wood composite increase from 12.5 to 20.6 MPa, but the transmittance (the wavelength was 550 nm) also increased from 80 to 87% due to the lower absorbance of visible light by lignin and the suppression of the interface debonding gap between the cell walls and the backfilled epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H-L. Zhu, W. Luo, P-N. Ciesielski, Z-Q. Fang, J-Y. Zhu, G. Henriksson, M.E. Himmel, and L-B. Hu: Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 16, 9305 (2016).

    Article  Google Scholar 

  2. M-W. Zhu, J-W. Song, T. Li, A. Gong, Y-B. Wang, J-Q. Dai, Y-G. Yao, W. Luo, D. Henderson, and L-B. Hu: Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 5181 (2016).

    Article  CAS  Google Scholar 

  3. Y-Y. Li, Q-L. Fu, S. Yu, M. Yan, and L. Berglund: Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules 17, 1358 (2016).

    Article  CAS  Google Scholar 

  4. H.S. Yaddanapudi, N. Hickerson, S. Saini, and A. Tiwari: Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum 146, 649 (2017).

    Article  CAS  Google Scholar 

  5. W-T. Gan, S-L. Xiao, L-K. Gao, R-N. Gao, J. Li, and X-X. Zhan: Luminescent and transparent wood composites fabricated by PMMA and γ-Fe2O3@YVO4:Eu3+ nanoparticles impregnation. ACS Sustainable Chem. Eng. 5, 3855 (2017).

    Article  CAS  Google Scholar 

  6. S. Fink: Transparent wood—A new approach in the functional study of wood structure. Holzforschung 46, 403 (1992).

    Article  CAS  Google Scholar 

  7. T. Li, M-W. Zhu, Z. Yang, J-W. Song, J-Q. Dai, Y-G. Yao, W. Luo, G. Pastel, B. Yang, and L-B. Hu: Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 7 (2016).

    Google Scholar 

  8. Z-Y. Yu, Y-J. Yao, J-N. Yao, L-M. Zhang, Z. Chen, Y-F. Gao, and H-J. Luo: Transparent wood containing CsxWO3 nanoparticles for heat-shielding-window applications. J. Mater. Chem. A 5, 6019 (2017).

    Article  CAS  Google Scholar 

  9. M-W. Zhu, T. Li, C.S. Davis, Y-G. Yao, J-Q. Dai, Y-B. Wang, F. AlQatari, J.W. Gilman, and L-B. Hu: Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332 (2016).

    Article  CAS  Google Scholar 

  10. M. Frey, D. Widner, J. Segmehl, K. Cssdorff, T. Keplinger, and I. Burgert: Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030 (2018).

    Article  CAS  Google Scholar 

  11. R-B. Zheng, M.A. Tshabalala, Q-Y. Li, and H-Y. Wang: Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures. Appl. Surf. Sci. 328, 453 (2015).

    Article  CAS  Google Scholar 

  12. Y-Y. Li, S. Yu, J.G.C. Veinot, J. Linnros, L. Berglund, and I. Sychugov: Luminescent transparent wood. Adv. Opt. Mater. 5, 3 (2016).

    Google Scholar 

  13. W.T. Gan, L.K. Gao, S.L. Xiao, W.B. Zhang, X.X. Zhan, and J. Li: Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J. Mater. Sci. 52, 3321 (2017).

    Article  CAS  Google Scholar 

  14. Q-L. Fu, L. Medina, Y-Y. Li, F. Carosio, A. Hajian, and L. Berglund: Nanostructured wood hybrids for fire retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 9, 36154 (2017).

    Article  CAS  Google Scholar 

  15. M-W. Zhu, Y-L. Wang, S-Z. Zhu, L-S. Xu, C. Jia, J-Q. Dai, J-W. Song, Y-G. Yao, Y-B. Wang, Y-F. Li, D. Henderson, W. Luo, H. Li, M.L. Minus, T. Li, and L-B. Hu: Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 29, 1602684 (2017).

    Google Scholar 

  16. C. Jia, T. Li, C-J. Chen, J-Q. Dai, I.M. Kierzewski, J-W. Song, Y-J. Li, C-P. Yang, C-W. Wang, and L.B. Hu: Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366 (2017).

    Article  CAS  Google Scholar 

  17. Y-Y. Li, X. Yang, Q-L. Fu, R. Rojas, M. Yan, and L. Berglund: Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6, 1094 (2018).

    Article  CAS  Google Scholar 

  18. Y-Y. Li, Q-L. Fu, R. Rojas, M. Yan, M. Lawoko, and L. Berglund: Lignin-retaining transparent wood. ChemSusChem 10, 3445 (2017).

    Article  CAS  Google Scholar 

  19. T. Goodrich, N. Nawaz, S. Feih, B.Y. Lattimer, and A.P. Mouritz: High-temperature mechanical properties and thermal recovery of balsa wood. J. Wood Sci. 56, 437 (2016).

    Article  Google Scholar 

  20. T.K. Das and A.K. Jain: Pollution prevention advances in pulp and paper processing. Environ. Prog. 20, 87 (2001).

    Article  CAS  Google Scholar 

  21. Y-Y. Li, V. Vasileva, I. Sychugov, S. Popov, and L. Berglund: Optically transparent wood: Recent progress, opportunities and challenges. Adv. Opt. Mater. 6, 1800059 (2018).

    Article  Google Scholar 

  22. D. Jeremic, R.E. Goacher, R. Yan, C. Karunakaran, and E.R. Master: Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases. Biotechnol. Biofuels 7, 496 (2014).

    Article  Google Scholar 

  23. C-J. Chen, Y-J. Li, J-W. Song, Z. Yang, Y-D. Kuang, E. Hitz, C. Jia, A. Gong, F. Jiang, J-Y. Zhu, B. Yang, J. Xie, and L-B. Hu: Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017).

    Article  Google Scholar 

  24. D. Pokhrel and T. Viraraghavan: Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 333, 37 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this research was provided by Joint Special Project of Agricultural Basic Research in Yunnan (2017FG001036) and the National Natural Science Foundation of China (41563008 and 31100420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongbo Zheng.

Supplementary Material

43578_2019_34060932_MOESM1_ESM.doc

Supplementary material for Journal of Materials Research: A green, steam-modified delignification method to low lignin delignified wood for thick, large, high transparent wood composites (approximately 6.94 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Guo, X., He, Y. et al. A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. Journal of Materials Research 34, 932–940 (2019). https://doi.org/10.1557/jmr.2018.466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.466

Navigation