Skip to main content
Log in

Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, the effect of cooling rate on the evolution of the microstructure and mechanical properties of an α + β titanium alloy has been systematically investigated. Titanium alloy samples were heated to 1066 °C (above the β transus), 930 °C (just below the β transus), and 850 °C (well below the β transus) followed by oil quenching, air cooling, and furnace cooling, respectively. Primary alpha (αp), lamellar alpha (αL), and martensite (α′) were the dominant features of the microstructures for all the samples heated below the β transus. Furnace-cooled samples showed variation in the size and shape of the αp and fraction of αL according to the heating temperature. At slower cooling rates, the thickness of the αL increased with the increase in temperature. Transmission electron microscopy and X-ray diffraction confirmed the presence of α′ in all the quenched samples. The volume fraction and size of the αp decreased with the increase in temperature but was independent of the cooling rate. The microhardness was relatively unaffected by the cooling rate for heating just below the β transus, i.e., 930 °C. The modulus of elasticity was found to be extremely sensitive to the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.J. Contieri, M. Zanotello, and R. Caram: Recrystallization and grain growth in highly cold worked CP-titanium. Mater. Sci. Eng., A 527, 3994 (2010).

    Article  CAS  Google Scholar 

  2. I. Weiss and S.L. Semiatin: Thermomechanical processing of beta titanium alloys—An overview. Mater. Sci. Eng., A 243, 46 (1998).

    Article  Google Scholar 

  3. G. Lutjering and J.C. Williams: Titanium (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  4. I. Weiss and S.L. Semiatin: Thermomechanical processing of alpha titanium alloys—An overview. Mater. Sci. Eng., A 263, 243 (1999).

    Article  Google Scholar 

  5. A. Ghaderi, P.D. Hodgson, and M.R. Barnett: Microstructure and texture development in Ti–5Al–5Mo–5V–3Cr alloy during cold rolling and annealing. Key Eng. Mater. 551, 210 (2013).

    Article  CAS  Google Scholar 

  6. D.F. Williams, D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen: Titanium in Medicine, Vol. 13 (Spinger-Verlag, Berlin, 2001).

    Google Scholar 

  7. C. Layens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, 2003), Weinheim.

    Book  Google Scholar 

  8. T. Ahmed and H. Rack: Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng., A 243, 206 (1998).

    Article  Google Scholar 

  9. H.H. Weigand: Umwandlung von (α + β) — titan legierungen mit aluminium. Metallkunde 54, 43 (1963).

    CAS  Google Scholar 

  10. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch: Modification of alpha morphology in Ti–6Al–4V by thermomechanical processing. Metall. Trans. A 17, 1935 (1986).

    Article  Google Scholar 

  11. F.H. Froes and W.T. Highberger: Synthesis of CORONA 5 (Ti–4.5 Al–5Mo–1.5 Cr). J. Met. 32, 57 (1980).

    CAS  Google Scholar 

  12. M. Peters, A. Gysier, and G. Lütjering: Titanium’ 80, 4th International Conference on Titanium, 1777 (Kyoto, Japan, 1980), Metallurgical Society of AIME.

    Google Scholar 

  13. M. Peters and G. Lütjering: Titanium’ 80, 4th International Conference on Titanium, 925 (Kyoto, Japan, 1980).

  14. R. Dabrowski: The kinetics of phase transformations during continuous cooling of Ti–6Al–4V alloy from the diphase α + β range. Arch. Metall. Mater. 56, 217 (2011).

    CAS  Google Scholar 

  15. S.L. Semiatin, V. Seetharaman, and I. Weiss: The thermomechanical processing of alpha/beta titanium alloys. JOM 49, 33 (1997).

    Article  CAS  Google Scholar 

  16. P. Pinke, L. Aplovi, and T. Kovacs: The influence of heat treatment on the microstructure of the casted Ti6Al4V titanium alloy. J. Metall. Eng. 1 (2012).

  17. J. Xu, W. Zeng, Y. Zhao, X. Sun, and Z. Du: Influence of cooling rate following heat treatment on microstructure and phase transformation for a two-phase alloy. J. Alloys Compd. 688, 301 (2016).

    Article  CAS  Google Scholar 

  18. J. Zhang, C.C. Tasan, M.J. Lai, A-C. Dippel, and D. Raabe: Complexion-mediated martensitic phase transformation in titanium. Nat. Commun. 8, 14210 (2017).

    Article  CAS  Google Scholar 

  19. T.W. Duerig, G.T. Terlinde, and J.C. Williams: Phase transformations and tensile properties of Ti–10V–2Fe–3Al. Metall. Trans. A 11, 1987 (1980).

    Article  Google Scholar 

  20. E.S.K. Menon, J.K. Chakravartty, S.L. Wadekar, and S. Banerjee: Stress induced martensitic transformation in Ti–20V. J. Phys. C4–43, 321 (1982).

    Google Scholar 

  21. H.M. Flower: Fifth International Conference on Titanium Science and Technology, 1651, G. Lutjering, U. Zwicker, and W. Blunk, eds. (Deutche Gesellschaft fur Metallkunde, Munich, Germany, 1985).

    Google Scholar 

  22. M. Ninomi, T. Kobayashi, I. Inagaki, and A.W. Thompson: The effect of deformation-induced transformation on the fracture toughness of commercial titanium alloys. Metall. Trans. A 21, 1733 (1990).

    Article  Google Scholar 

  23. S. Ishiyama, S. Hanada, and O. Izumi: Effect of Zr, Sn and Al additions on deformation mode and beta phase stability of metastable beta Ti alloys. ISIJ Int. 31, 807 (1991).

    Article  CAS  Google Scholar 

  24. S. Ishiyama and S. Hanada: Effect of zirconium, tin and aluminium addition on the mechanical properties of metastable beta-titanium alloys. Sumimoto Search 54, 41 (1993).

    Google Scholar 

  25. A.I.P. Nwobu, H.M. Flower, and D.R.F. West: Seventh International Conference on Titanium, 531, F.H. Froes and I.L. Caplan, eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 1993).

    Google Scholar 

  26. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, and S.L. Semiatin: Precipitation and recrystallization behaviour of beta titanium alloys during continuous heat treatment. Metall. Mater. Trans. A 34, 147 (2003).

    Article  Google Scholar 

  27. H. Shao, Y.Q. Zhao, P. Ge, and W.D. Zeng: Influence of cooling rate and aging on the lamellar microstructure and fractography of TC21 titanium alloy. Metallogr., Microstruct., Anal. 2, 35 (2013).

    Article  CAS  Google Scholar 

  28. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Microstructure evolution during alpha-beta heat treatment of Ti–6Al–4V. Metall. Mater. Trans. A 34, 2377 (2003).

    Article  Google Scholar 

  29. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell: Formation of α-Widmanstätten structure: Effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy. J. Alloys Compd. 329, 142 (2001).

    Article  CAS  Google Scholar 

  30. C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, and W.Q. Wang: A study on the microstructures and tensile properties of new beta high strength titanium alloy. J. Alloys Compd. 550, 23 (2013).

    Article  CAS  Google Scholar 

  31. T. Grosdidier and M.J. Philippe: Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Mater. Sci. Eng., A 291, 218 (2000).

    Article  Google Scholar 

  32. S. Ankem and C.A. Greene: Recent development in microstructure/property relationships of the beta titanium alloys. Mater. Sci. Eng., A 263, 127 (1999).

    Article  Google Scholar 

  33. S. Malinov, W. Sha, Z. Guo, C.C. Tang, and A.E. Long: Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater. Charact. 48, 279 (2002).

    Article  CAS  Google Scholar 

  34. B.D. Cullity: Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Philippines, 1956).

    Google Scholar 

  35. A.S.M. Handbook: Metallography and Microstructures (ASM International, Materials Park, 2004).

    Google Scholar 

  36. OIM: Analysis Version 7.2. User Manual (TexSEM Laboratories Inc., Draper, 2013).

    Google Scholar 

  37. PDF-2, Powder diffraction Pattern Database, ICCD, Record number 044–1294.

  38. O.P. Karasevskaaya, O.M. Ivasishin, S.L. Semiatin, and Y.V. Matviychuk: Deformation behavior of beta-titanium alloys. Mater. Sci. Eng., A 354, 121 (2003).

    Article  CAS  Google Scholar 

  39. B. Guelorget, M. Francois, and J. Lu: Micro-indentation as a local damage measurement technique. Mater. Lett. 61, 34 (2007).

    Article  CAS  Google Scholar 

  40. L.W. Meyer, L. Kruger, K. Sommer, T. Halle, and M. Hockauf: Dynamic strength and failure behavior of titanium alloy Ti–6Al–4V for a variation of heat treatments. Mech. Time-Depend. Mater. 12, 237 (2008).

    Article  CAS  Google Scholar 

  41. S.S. da Rocha, G.L. Adabo, L.G. Vaz, and G.E.P. Henriques: Effect of thermal treatments on tensile strength of commercially cast pure titanium and Ti–6Al–4V alloys. J. Mater. Med. 16, 759 (2005).

    Article  CAS  Google Scholar 

  42. W. Burgers: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561 (1934).

    Article  CAS  Google Scholar 

  43. N. Gey and M. Humbert: Characterization of the variant selection occurring during the α → β → α phase transformation of a cold rolled titanium sheet. Acta Mater. 50, 277 (2002).

    Article  CAS  Google Scholar 

  44. D. Banerjee and J.C. Williams: Prospectives on titanium science and technology. Acta Mater. 61, 844 (2013).

    Article  CAS  Google Scholar 

  45. X. Ma, F. Li, J. Li, J. Cao, P. Li, and J. Dong: Effect of heat treatment on the microstructure and micro-mechanical behaviour of quenched Ti–6Al–4V alloy. J. Mater. Eng. Perform. 24, 3761 (2015).

    Article  CAS  Google Scholar 

  46. G. Lutjering: Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng., A 243, 32 (1998).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Director of VNIT Nagpur for providing the necessary facilities and constant encouragement to publish this paper. The authors would like to acknowledge the use of National Facility for Texture and OIM (A DST-IRPHA project), IIT Bombay for EBSD measurements. One of the authors RKK wishes to acknowledge Science and Engineering Research Board (SERB) for financial assistance (grant no. EEQ/2016/000408 dated 08/02/2017) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Khatirkar, R.K., Kumar, A. et al. Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy. Journal of Materials Research 33, 946–957 (2018). https://doi.org/10.1557/jmr.2018.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.54

Navigation