Skip to main content

Advertisement

Log in

Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, a β-Ti alloy (Ti–15V–3Sn–3Cr–3Al) was unidirectionally cold rolled to 80% thickness reduction, followed by recrystallization at two temperatures: (i) 1013 K and (ii) 1053 K. The microstructural developments were studied using light optical microscopy, scanning electron microscopy X-ray peak profile analysis, and electron backscattered diffraction. The bulk texture of deformed and fully recrystallized samples was studied using X-ray diffraction. The deformed microstructures showed the presence of high fraction of shear bands, and these bands were preferentially formed in γ-fiber grains than in the grains with other orientations. Cold rolled β-Ti alloy samples were fully recrystallized in 10 min at 1053 K and in 90 min at 1013 K. Strong α- and γ-fibers were formed after 80% cold rolling, while strong discontinuous γ-fiber (with very strong {111}〈112〉 component) was formed after complete recrystallization. Oriented nucleation was found to be the dominant mechanism for the development of recrystallization texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. I. Weiss and S.L. Semiatin: Thermomechanical processing of beta titanium alloys—An overview. Mater. Sci. Eng., A 243, 46 (1998).

    Article  Google Scholar 

  2. G. Lütjering and J.C. Williams: Titanium, 2nd ed. (Springer-Verlag Berlin Heidelberg, Hamburg, 2007).

    Google Scholar 

  3. R.R. Boyer: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213, 103 (1996).

    Article  Google Scholar 

  4. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, and S. Niwa: Development of low rigidity β-type titanium alloy for biomedical applications. Mater. Trans. 43, 2970 (2002).

    Article  CAS  Google Scholar 

  5. S. Prasad, M. Ehrensberger, M.P. Gibson, H. Kim, and E.A. Monaco: Biomaterial properties of titanium in dentistry. J. Oral Biosci. 57, 192 (2015).

    Article  Google Scholar 

  6. V.V. Balasubrahmanyam and Y.V.R.K. Prasad: Deformation behavior of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging. Mater. Sci. Eng., A 336, 150 (2002).

    Article  Google Scholar 

  7. M. Ikeda, S. Komatsu, I. Sowa, and M. Niinomi: Aging behavior of the Ti–29Nb–13Ta–4.6Zr new beta alloy for medical implants. Metall. Mater. Trans. A 33, 4 (2002).

    Article  Google Scholar 

  8. K. Wang: The use of titanium for medical applications in the USA. Mater. Sci. Eng., A 213, 8 (1996).

    Article  Google Scholar 

  9. S.L. Semiatin, V. Seetharaman, and I. Weiss: The thermomechanical processing of alpha/beta titanium alloys. JOM 49, 33 (1997).

    Article  CAS  Google Scholar 

  10. J.C. Williams and E.A. Starke: The role of thermomechanical processing in tailoring the properties of aluminum and titanium alloys. in Deformation, Processing and Structure (ASM, Metals Park, Ohio, 1984), pp. 1267–1276.

    Google Scholar 

  11. M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena (Amsterdam, Boston: Elsevier, 2004).

    Google Scholar 

  12. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials (Elsevier, New York, NY, 2007).

    Google Scholar 

  13. R.K. Khatirkar and S. Kumar: Comparison of recrystallization textures in interstitial free and interstitial free high strength steels. Mater. Chem. Phys. 127, 128 (2011).

    Article  CAS  Google Scholar 

  14. W.B. Hutchinson: Development and control of annealing textures in low-carbon steels. Int. Mater. Rev. 29, 25 (1984).

    CAS  Google Scholar 

  15. R.K. Ray, J.J. Jonas, and R.E. Hook: Cold rolling and annealing textures in low carbon and extra low carbon steels. Int. Mater. Rev. 39, 129 (1994).

    Article  CAS  Google Scholar 

  16. H. Inoue, S. Fukushima, and N. Inakazu: Transformation textures in Ti–15V–3Cr–3Sn–3Al alloy sheets. Mater. Trans. 33, 129 (1992).

    Article  CAS  Google Scholar 

  17. Y. Liu, S. Liu, H. Fan, C. Deng, L. Cao, X. Wu, and Q. Liu: Crystallographic analysis of nucleation for random orientations in high-purity tantalum. J. Mater. Res. 33, 1755 (2018).

    Article  CAS  Google Scholar 

  18. A. Ghaderi, P.D. Hodgson, and M.R. Barnett: Microstructure and texture development in Ti–5Al–5Mo–5V–3Cr alloy during cold rolling and annealing. Key Eng. Mater. 551, 210 (2013).

    Article  CAS  Google Scholar 

  19. F. Ling, E.A. Starke, and B.G. Lefevre: Deformation behavior and texture development in beta Ti–V alloys. Metall. Trans. 5, 179 (1974).

    CAS  Google Scholar 

  20. N.P. Gurao, A. Ali A, and S. Suwas: Study of texture evolution in metastable beta-Ti alloy as a function of strain path and its effect on alpha transformation texture. Mater. Sci. Eng., A 504, 24 (2009).

    Article  CAS  Google Scholar 

  21. Y. Yuan, W. Liu, B. Fu, H. Xu, G. Luo, G. Tang, and Y. Jiang: The effects of electropulsing on the recrystallization behavior of rolled pure tungsten. J. Mater. Res. 27, 2630 (2012).

    Article  CAS  Google Scholar 

  22. K.K. Surthi, R.K. Khatirkar, and S.G. Sapate: Effect of mode of rolling on recrystallization kinetics and microstructure evolution in interstitial free high strength steel sheet. ISIJ Int. 53, 356 (2013).

    Article  CAS  Google Scholar 

  23. I.L. Dillamore, J.G. Roberts, and A.C. Bush: Occurrence of shear bands in heavily rolled cubic metals. Met. Sci. 13, 73 (1979).

    Article  CAS  Google Scholar 

  24. J.J. Jonas: Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Technol. 117, 293 (2001).

    Article  CAS  Google Scholar 

  25. M.R. Barnett and J.J. Jonas: Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ Int. 37, 706 (1997).

    Article  CAS  Google Scholar 

  26. D. Liu, A.O. Humphreys, M.R. Toroghinezhad, and J.J. Jonas: The deformation microstructure and recrystallization behavior of warm rolled steels. ISIJ Int. 42, 751 (2002).

    Article  CAS  Google Scholar 

  27. B.K. Sokolov, V.V. Gubernatorov, I.V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: The deformation and shear bands in the Fe–3% Si alloy. Textures Microstruct. 32, 21 (1999).

    Article  CAS  Google Scholar 

  28. S.N. Nasser, W.G. Guo, and J.Y. Cheng: Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 47, 3705 (1999).

    Article  Google Scholar 

  29. S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: Experiments and modeling. Mech. Mater. 33, 425 (2001).

    Article  Google Scholar 

  30. S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: Development of cold rolled texture and microstructure in a hot band Fe–3% Si steel. ISIJ Int. 42, 770 (2002).

    Article  Google Scholar 

  31. A.H. Cottrell: Theory of dislocations. Prog. Met. Phys. 1, 77 (1949).

    Article  CAS  Google Scholar 

  32. R.D. Doherty: The deformed state and nucleation of recrystallization. Met. Sci. 8, 132 (1974).

    Article  CAS  Google Scholar 

  33. R. Unnikrishnan, A. Kumar, R.K. Khatirkar, S.K. Shekhawat, and S.G. Sapate: Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing. Mater. Chem. Phys. 183, 339 (2016).

    Article  CAS  Google Scholar 

  34. R.L. Every and M. Hatherly: Oriented nucleation in low carbon steels. Texture 1, 183 (1974).

    Article  CAS  Google Scholar 

  35. W.R. Hibbard and W.R. Tully: The effect of orientation on the recrystallization kinetics of cold-rolled single crystals. AIME Trans. 221, 336 (1961).

    CAS  Google Scholar 

  36. M. Holscher, D. Raabe, and K. Lucke: Rolling and recrystallization textures of bcc steels. Mater. Technol. 62, 567 (1991).

    Google Scholar 

  37. G. Ibe and K. Lucke: Correlations of orientation during recrystallization of single crystals of an iron-silicon alloy containing 3 percent Si. Arch. für das Eisenhuttenwes. 39, 693 (1968).

    Article  CAS  Google Scholar 

  38. K. Lücke and M. Hölscher: Rolling and recrystallization textures of BCC steels. Textures Microstruct. 14, 585 (1991).

    Article  Google Scholar 

  39. A.K. Singh, A. Bhattacharjee, and A.K. Gogia: Microstructure and texture of rolled and annealed beta titanium alloy Ti–10V–4.5Fe–1.5Al. Mater. Sci. Eng., A 270, 225 (1999).

    Article  Google Scholar 

  40. B. Sander and D. Raabe: Texture inhomogeneity in a Ti–Nb-based β-titanium alloy after warm rolling and recrystallization. Mater. Sci. Eng., A 479, 236 (2008).

    Article  CAS  Google Scholar 

  41. Y.B. Park, D.N. Lee, and G. Gottstein: The evolution of recrystallization textures in body centered cubic metals. Acta Mater. 46, 3371 (1998).

    Article  CAS  Google Scholar 

  42. K. Ushioda and H. Tsuchiya: Fundamentals for controlling the microstructure and properties of cold rolled and continuously annealed sheet steels. Trans. Indian Inst. Met. 66, 655 (2013).

    Article  CAS  Google Scholar 

  43. D. Raabe, G. Schlenkert, H. Weisshaupt, and K. Lücke: Texture and microstructure of rolled and annealed tantalum. Mater. Sci. Technol. 10, 299 (2013).

    Article  Google Scholar 

  44. J.J. Jonas, X. Quelennec, and L. Jiang: The Avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748 (2009).

    Article  CAS  Google Scholar 

  45. C. Zhang, L. Zhang, W. Shen, and Y. Xia: The kinetics and microstructural evolution during metadynamic recrystallization of medium carbon Cr–Ni–Mo alloyed steel. J. Mater. Res. 32, 1367 (2017).

    Article  CAS  Google Scholar 

  46. A.S.M. Handbook: Metallography and Microstructures (ASM International, Materials Park, 2004).

    Google Scholar 

  47. OIM: Analysis Version 7.2 (EDAX Inc., Draper, UT 84020, 2013).

    Google Scholar 

  48. P. Van Houtte: The ‘MTM-FHM’ Software System Version 2 Manual, KU Leuven, Leuven, Belgium (2004).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director of VNIT Nagpur for providing the necessary facilities and constant encouragement to publish this paper. One of the authors, RKK, wishes to acknowledge the Science and Engineering Research Board (SERB) for financial assistance to carry out this work (Grant No. EEQ/2016/000408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Khatirkar, R.K., Dandekar, T. et al. Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy. Journal of Materials Research 34, 3082–3092 (2019). https://doi.org/10.1557/jmr.2019.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.225

Navigation