Skip to main content
Log in

Chemical solution deposition as a route to narrow-band gap and room-temperature ferromagnetic perovskite [K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x films

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

[K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x (KNBNNO, 0 ≤ x ≤ 0.3) films have been fabricated on different substrates for the first time, using a modified chemical solution deposition method. The microstructure, optical properties, ferromagnetism, and substrate effects of KNBNNO films were assessed, and we found that BaNi0.5Nb0.5O3−δ (BNNO) content was a key factor in determining the properties of the final products. The lower band gap of KNBNNO is due to the band-to-band transition from hybridized Ni 3d and O 2p to Nb 4d states. Moreover, with increasing x from 0 to 0.3, the magnetism transition process of the samples from diamagnetism to ferromagnetism may originate from the competition between ferromagnetic exchange interactions in Ni2+–VO2−–Ni2+ and superexchange interactions in Ni2+–Ni2+. Notably, absorption behaviors in the visible light wave band for KNBNNO films have been realized, which makes it possible to use KNBNNO films for perovskite solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, and R. Ramesh: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nano 5, 143–147 (2010).

    Article  CAS  Google Scholar 

  2. G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.Y. Yang, F.Q. Huang, F.H. Liao, and J.H. Lin: New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013).

    Article  Google Scholar 

  3. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  4. F. Wang, I. Grinberg, and A.M. Rappe: Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Appl. Phys. Lett. 104, 152903 (2014).

    Article  Google Scholar 

  5. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, and G.E. Jellison: Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012).

    Article  Google Scholar 

  6. I. Grinberg, D.V. West, M. Torres, G.Y. Gou, D.M. Stein, L.Y. Wu, G.N. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, and A.M. Rappe: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509 (2013).

    Article  CAS  Google Scholar 

  7. W.L. Zhou, H.M. Deng, P.X. Yang, and J.H. Chu: Structure phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x ferroelectrics. Appl. Phys. Lett. 105, 111904 (2014).

    Article  Google Scholar 

  8. C. Pithan, Y. Shiratori, J. Dornseiffer, F.H. Haege, A. Magrez, and R. Waser: Microemulsion mediated synthesis of nanocrystalline (KxNa1−x) NbO3 powders. J. Cryst. Growth. 280, 191–200 (2005).

    Article  CAS  Google Scholar 

  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84–87 (2004).

    Article  CAS  Google Scholar 

  10. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, and D.J. Green: (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013).

    Article  CAS  Google Scholar 

  11. F. Bortolani, A.D. Campo, J.F. Fernandez, F. Clemens, and M.F. Rubio: High strain in (K,Na)NbO3-based lead-free piezoelectric fibers. Chem. Mater. 26, 3838–3848 (2014).

    Article  CAS  Google Scholar 

  12. Q.L. Deng, J.Z. Zhang, T. Huang, L.P. Xu, K. Jiang, Y.W. Li, Z.G. Hu, and J.H. Chu: Optoelectronic properties and polar nano-domain behaviour of sol-gel derived K0.5Nb0.5Nb1−x MnxO3−δ nanocrystalline films with enhanced ferroelectricity. J. Mater. Chem. C. 3, 8225 (2015).

    Article  CAS  Google Scholar 

  13. S.Y. Lee, J.S. Kim, C.W. Ahn, A. Ullah, H.J. Lee, and W. Kim: Influence of piezoelectric property on annealing temperature of Ta-substituted (K0.5Na0.5)NbO3 thin films by chemical solution deposition. Curr. Appl. Phys. 11, S157–S160 (2011).

    Article  Google Scholar 

  14. P. Ye, G.L. Liu, S.M. He, M. Cao, S.S. Kang, Y.X. Chen, S.S. Yan, and L.M. Mei: Effects of oxygen ambient on dielectric and ferroelectric properties of lead free Lix(K0.5Na0.5)(1−x)NbO3 thin films derived from chemical solution deposition. J. Alloys Compd. 554, 400–404 (2013).

    Article  CAS  Google Scholar 

  15. K. Tanaka, K.I. Kakimoto, and H. Ohsato: Morphology and crystallinity of KNbO3-based nano powder fabricated by sol–gel process. J. Eur. Ceram. Soc. 27, 3591–3595 (2007).

    Article  CAS  Google Scholar 

  16. E.M. Kopnin, S.Y. Istomin, O.G. D’yachenko, E.V. Antipovl, P. Bordet, J.J. Capponi, C. Chaillout, M. Marezio, S. Brion, and B. Souletie: Synthesis, structure, and resistivity properties of K1−xBaxNbO3 (0.2 ≤ x ≤ 0.5) and K0.5Sr0.5NbO3. Mater. Res. Bull. 30, 1379–1386 (1995).

    Article  CAS  Google Scholar 

  17. J. Venkatesh, V. Sherman, and N. Setter: Synthesis and dielectric characterization of potassium niobate tantalate ceramics. J. Am. Ceram. Soc. 88, 3397–3404 (2005).

    Article  CAS  Google Scholar 

  18. K. Tanaka, H. Hayashi, K.I. Kakimoto, H. Ohsato, and T. Iijima: Effect of (Na,K)-excess precursor solutions on alkoxy-derived (Na,K)NbO3 powders and thin films. Jpn. J. Appl. Phys. 46, 6964–6970 (2007).

    Article  CAS  Google Scholar 

  19. Z.G. Yi, Y. Liu, M.A. Carpenter, J. Schiemer, and R.L. Withers: K0.46Na0.54NbO3 ferroelectric ceramics: Chemical synthesis, electro-mechanical characteristics, local crystal chemistry and elastic anomalies. Dalton Trans. 40, 5066–5072 (2011).

    Article  CAS  Google Scholar 

  20. Q. Yu, J.F. Li, W. Sun, Z. Zhou, Y. Xu, Z.K. Xie, F.P. Lai, and Q.M. Wang: Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J. Appl. Phys. 113, 024101 (2013).

    Article  Google Scholar 

  21. Y.J. Zhang, H.G. Zhang, J.H. Yin, H.W. Zhang, J.L. Chen, W.Q. Wang, and G.H. Wu: Structural and magnetic properties in Bi1−xRxFeO3 (x = 0–1, R = La, Nd, Sm, Eu, and Tb) polycrystalline ceramics. J. Magn. Magn. Mater. 322, 2251–2255 (2010).

    Article  CAS  Google Scholar 

  22. J. Rani, K.L. Yadav, and S. Prakash: Modified structure and electrical properties of BSZT doped KNN hybrid ceramic. Appl. Phys. A. 108, 761–764 (2012).

    Article  CAS  Google Scholar 

  23. K. Ramam and M. Lopez: Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics. J. Phys. D: Appl. Phys. 39, 4466 (2006).

    Article  CAS  Google Scholar 

  24. J. Tauc and R. Grigorovici: Optical properties and electronic structure of amorphous germanium. Phy. Status. Solidi. 15, 627–637 (1966).

    Article  CAS  Google Scholar 

  25. T.T. Su, H. Jiang, H. Gong, and Y.C. Zhai: An alternative approach of solid-state reaction to prepare nanocrystalline KNbO3. J. Mater. Sci. 45, 3778–3783 (2010).

    Article  CAS  Google Scholar 

  26. A.F. Jalbout, H. Chen, and S.L. Whittenburg: Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl. Phys. Lett. 81, 2217–2219 (2002).

    Article  CAS  Google Scholar 

  27. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara: Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B. 57, R2037 (1998).

    Article  CAS  Google Scholar 

  28. J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005).

    Article  CAS  Google Scholar 

  29. W.L. Zhou, H.M. Deng, L. Yu, P.X. Yang, and J.H. Chu: Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin film. J. Appl. Phys. 117, 194102 (2015).

    Article  Google Scholar 

  30. X.Z. Zhai, H.M. Jia, Y.G. Zhang, Y. Lei, J. Wei, Y.H. Gao, J.H. Chu, W.W. He, J.J. Yin, and Z. Zheng: In situ fabrication of Cu2ZnSnS4 nanoflake thin film on both rigid and flexible substrate. CrystEngComm 16, 6244–6249 (2014).

    Article  CAS  Google Scholar 

  31. H.R. Yan, H.M. Deng, N.F. Ding, J. He, L. Peng, L. Sun, P.X. Yang, and J.H. Chu: Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett. 111, 123–125 (2013).

    Article  CAS  Google Scholar 

  32. X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, and J.H. Chu: Strain-induced structural phase transition, ferromagnetic and optical properties of Bi1−xTbxFeO3 thin films. J. Phys. D: Appl. Phys. 48, 385002 (2015).

    Article  Google Scholar 

  33. J. He, L. Sun, S.Y. Chen, Y. Chen, P.X. Yang, and J.H. Chu: Composition dependence of structure and optical properties of Cu2ZnSn(S,Se)4 solid solutions an experimental study. J. Alloys Compd. 511, 129–132 (2012).

    Article  CAS  Google Scholar 

  34. Y.G. Su, S.W. Wang, Y. Meng, H. Han, and X.J. Wang: Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: Synthesis, structure, and photocatalytic performance. RSC Adv 2, 12932–12939 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61474045) and the State Key Basic Research Program of China (2013CB922300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhen Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Wang, S., Shang, C. et al. Chemical solution deposition as a route to narrow-band gap and room-temperature ferromagnetic perovskite [K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x films. Journal of Materials Research 34, 3627–3635 (2019). https://doi.org/10.1557/jmr.2019.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.264

Navigation