Skip to main content
Log in

Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Colloidal quantum dot photovoltaic devices have improved from initial, sub-1% solar power conversion efficiency to current record performance of over 7%. Rapid advances in materials processing and device physics have driven this impressive performance progress. The highest-efficiency approaches rely on a fabrication process that starts with nanocrystals in solution, initially capped with long organic molecules. This solution is deposited and the resultant film is treated using a solution containing a second, shorter capping ligand, leading to a cross-linked, non-redispersible, and dense layer. This procedure is repeated, leading to the widely employed layer-by-layer solid-state ligand exchange. We will review the properties and features of this process, and will also discuss innovative pathways to creating even higher-performing films and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. T. Markel, T. Mai, and M. Kintner-Meyer: Transportation Electrification Load Development for a Renewable Future Analysis (No. PNNL-SA-74813) (Pacific Northwest National Laboratory (PNNL), Richland, WA, 2010).

    Google Scholar 

  2. US Department of Energy: $1/W Photovoltaic Systems (2010). Available at http://www1.eere.energy.gov/solar/sunshot/pdfs/dpw_white_paper.pdf

  3. E.H. Sargent: Infrared photovoltaics made by solution processing. Nat. Photonics 3, 6 (2009).

    Article  CAS  Google Scholar 

  4. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  5. C.B. Murray, D.J. Norris, and M.G. Bawendi: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).

    CAS  Google Scholar 

  6. E.H. Sargent: Colloidal quantum dot solar cells. Nat. Photonics 6, 3 (2012).

    Article  CAS  Google Scholar 

  7. J.J. Choi, W.N. Wenger, R.S. Hoffman, Y. Lim, J. Luria, J. Jasieniak, J.A. Marohn, and T. Hanrath: Solution-processed nanocrystal quantum dot tandem solar cells. Adv. Mater. 23, 3144 (2011).

    Article  CAS  Google Scholar 

  8. X. Wang, G.I. Koleilat, J. Tang, H. Liu, I.J. Kramer, R. Debnath, L. Brzozowski, D.A.R. Barkhouse, L. Levina, S. Hoogland, and E.H. Sargent: Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photonics 5, 480 (2011).

    Article  CAS  Google Scholar 

  9. A.P. Alivisatos: Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  10. D. Yu, C. Wang, and P. Guyot-Sionnest: N-type conducting CdSe nanocrystal solids. Science 300, 1277 (2003).

    Article  CAS  Google Scholar 

  11. S. Maenosono, T. Okubo, and Y. Yamaguchi: Overview of nanoparticle array formation by wet coating. J. Nanopart. Res. 5, 5 (2003).

    Article  CAS  Google Scholar 

  12. S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, 2996 (2001).

    Article  CAS  Google Scholar 

  13. S.A. McDonald, G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, and E.H. Sargent: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 2 (2005).

    Article  CAS  Google Scholar 

  14. A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L.R. Rollny, G.H. Carey, A. Fischer, K.W. Kemp, I.J. Kramer, Z. Ning, A.J. Labelle, K.W. Chou, A. Amassian, and E.H. Sargent: Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7, 9 (2012).

    Article  CAS  Google Scholar 

  15. I.J. Kramer and E.H. Sargent: Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506 (2011).

    Article  CAS  Google Scholar 

  16. D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, and E.H. Sargent: N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 46 (2012).

    Article  CAS  Google Scholar 

  17. G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, and E.H. Sargent: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833 (2008).

    Article  CAS  Google Scholar 

  18. K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil, L. Levina, and E.H. Sargent: Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Article  CAS  Google Scholar 

  19. J. Tang, X. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, and E.H. Sargent: Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398 (2010).

    Article  CAS  Google Scholar 

  20. J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, and A.J. Nozik: Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488 (2008).

    Article  CAS  Google Scholar 

  21. R. Debnath, J. Tang, D.A.R. Barkhouse, X. Wang, A.G. Pattantyus-Abraham, L. Brzozowski, L. Levina, and E.H. Sargent: Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. J. Am. Chem. Soc. 132, 5952 (2010).

    Article  CAS  Google Scholar 

  22. W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. Atwater, and A.P. Alivisatos: Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5, 8140 (2011).

    Article  CAS  Google Scholar 

  23. K.S. Leschkies, T.J. Beatty, M.S. Kang, D.J. Norris, and E.S. Aydil: Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 3, 3638 (2009).

    Article  CAS  Google Scholar 

  24. J.M. Luther, J. Gao, M.T. Lloyd, O.E. Semonin, M.C. Beard, and A.J. Nozik: Stability assessment on a 3% Bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 22, 3704 (2010).

    Article  CAS  Google Scholar 

  25. J. Gao, C.L. Perkins, J.M. Luther, M.C. Hanna, H.-Y. Chen, O.E. Semonin, A.J. Nozik, R.J. Ellingson, and M.C. Beard: N-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263 (2011).

    Article  CAS  Google Scholar 

  26. A.G. Pattantyus-Abraham, I.J. Kramer, D.A.R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M.K. Nazeeruddin, M. Grätzel, and E.H. Sargent: Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374 (2010).

    Article  CAS  Google Scholar 

  27. H. Liu, J. Tang, I.J. Kramer, R. Debnath, G.I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, and E.H. Sargent: Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832 (2011).

    CAS  Google Scholar 

  28. J. Tang, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E.H. Sargent: Quantum junction solar cells. Nano Lett. 12, 4889 (2012).

    Article  CAS  Google Scholar 

  29. H. Liu, D. Zhitomirsky, S. Hoogland, J. Tang, I.J. Kramer, Z. Ning, and E.H. Sargent: Systematic optimization of quantum junction colloidal quantum dot solar cells. Appl. Phys. Lett. 101, 151112 (2012).

    Article  CAS  Google Scholar 

  30. D.V. Talapin and C.B. Murray: PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86 (2005).

    Article  CAS  Google Scholar 

  31. J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, and E.H. Sargent: Fast, sensitive and spectrally tunable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40 (2008).

    Article  CAS  Google Scholar 

  32. Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, and M. Law: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960 (2010).

    Article  CAS  Google Scholar 

  33. Y. Gao, M. Aerts, C.S.S. Sandeep, E. Talgorn, T.J. Savenije, S. Kinge, L.D.A. Siebbeles, and A.J. Houtepen: Photoconductivity of PbSe quantum-dot solids: dependence on ligand anchor group and length. ACS Nano 6, 9606 (2012).

    Article  CAS  Google Scholar 

  34. T.J. Savenije, M.P. de Haas, and J.M. Warman: The yield and mobility of charge carriers in smooth and nanoporous TiO2 films. Z. Phys. Chem. 212, 201 (1999).

    Article  CAS  Google Scholar 

  35. E. Talgorn, R.D. Abellon, P.J. Kooyman, J. Piris, T.J. Savenije, A. Goossens, A.J. Houtepen, and L.D.A. Siebbeles: Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4, 1723 (2010).

    Article  CAS  Google Scholar 

  36. E. Talgorn, M.A. de Vries, L.D.A. Siebbeles, and A.J. Houtepen: Photoconductivity enhancement in multilayers of CdSe and C.T. quantum dots. ACS Nano 5, 3552 (2011).

    Article  CAS  Google Scholar 

  37. D.V. Talapin, J.S. Lee, M.V. Kovalenko, and E.V. Shevchenko: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2010).

    Article  CAS  Google Scholar 

  38. R. Bose, J.F. McMillan, J. Gao, K.M. Rickey, C.J. Chen, D.V. Talapin, C.B. Murray, and C.W. Wong: Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 mu m for controllable Forster energy transfer. Nano Lett. 8, 2006 (2008).

    Article  CAS  Google Scholar 

  39. H.E. Romero and M. Drndic: Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 15, 156801 (2005).

    Article  CAS  Google Scholar 

  40. J.S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, and D.V. Talapin: Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348 (2011).

    Article  CAS  Google Scholar 

  41. P. Guyot-Sionnest: Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169 (2012).

    Article  CAS  Google Scholar 

  42. O. Voznyy: Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 115, 15927 (2011).

    Article  CAS  Google Scholar 

  43. M. Yu, G.W. Fernando, R. Li, F. Papadimitrakopoulos, N. Shi, and R. Ramprasad: First principles study of CdSe quantum dots: stability, surfac, unsaturations, and experimental validation. Appl. Phys. Lett. 88, 231910 (2006).

    Article  CAS  Google Scholar 

  44. M. Law, J.M. Luther, Q. Song, B.K. Hughes, C.J. Perkins, and A.J. Nozik: Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974 (2008).

    Article  CAS  Google Scholar 

  45. D. Vanmaekelbergh: Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. NanoToday 6, 419 (2011).

    Article  CAS  Google Scholar 

  46. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, and C.B. Murray: Structural diversity in binary nanoparticle superlattices. Nature 439, 55 (2006).

    Article  CAS  Google Scholar 

  47. M. Drndici, M.V. Jarosz, N.Y. Morgan, M.A. Kastner, and M.G. Bawendi: Transport properties of annealed CdSe colloidal nanocrystal solids. J. Appl. Phys. 12, 7498 (2002).

    Article  CAS  Google Scholar 

  48. B.W. Goodfellow, R.N. Patel, M.G. Panthani, D.-M. Smilgies, and B.A. Korgel: Melting and sintering of a body-centered cubic superlattice of PbSe nanocrystals followed by small angle X-ray scattering. J. Phys. Chem. C 115, 6397 (2011).

    Article  CAS  Google Scholar 

  49. P. Liljeroth, K. Overgaag, A. Urbieta, B. Grandidier, S.G. Hickey, and D.l. Vanmaekelbergh: Electron transport via local polarons at interface atoms. Phys. Rev. Lett. 97, 096803 (2006).

    Article  CAS  Google Scholar 

  50. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y.C. Cao, W.A. Bassett, H. Wu, H. Fan, and H. Weller: Deviatoric stress driven formation of large single-crystal PbS nanosheet from nanoparticles and in situ monitoring of oriented attachment. J. Am. Chem. Soc. 133, 14484 (2011).

    Article  CAS  Google Scholar 

  51. L. Cademartiri, A. Ghadimi, and G.A. Ozin: Nanocrystal plasma polymerization: from colloidal nanocrystals to inorganic architectures. Acc. Chem. Res. 41, 1820 (2008).

    Article  CAS  Google Scholar 

  52. K.W. Chou, B. Yan, R. Li, E.Q. Li, K. Zhao, D.H. Anjoum, S. Alvarez, R. Gassaway, A. Biocca, S.T. Thoroddsen, A. Hexemer, and A. Amassian: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mat. 25, 1923 (2013).

    Article  CAS  Google Scholar 

  53. M.V. Kovalenko, M. Scheele, and D.V. Talapin: PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 324, 1417 (2005).

    Article  CAS  Google Scholar 

  54. W.Y. Liu, J.S. Lee, and D.V. Talapin: III–V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 4, 1349 (2013).

    Article  CAS  Google Scholar 

  55. A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, and D.V. Talapin: Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands. J. Am. Chem. Soc. 133, 10612 (2011).

    Article  CAS  Google Scholar 

  56. A.T. Fafarman, W. Koh, B.T. Diroll, D.K. Kim, D.-K. Ko, S.J. Oh, X. Ye, V. Doan-Nguyen, M.R. Crump, D.C. Reifsnyder, C.B. Murray, and C.R. Kagan: Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 133, 15753 (2011).

    Article  CAS  Google Scholar 

  57. M.A. Caldwell, A.E. Albers, S.C. Levy, T.E. Pick, B.E. Cohen, B.A. Helms, and D.J. Milliron: Driving oxygen coordinated ligand exchange at nanocrystal surfaces using trialkylsilylated chalcogenides. Chem. Commun. 47, 556 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is based, in part, on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. G. H. C. acknowledges the financial support of the Vanier Canada Graduate Scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, G.H., Chou, K.W., Yan, B. et al. Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Communications 3, 83–90 (2013). https://doi.org/10.1557/mrc.2013.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.17

Navigation