Skip to main content
Log in

Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The novel Three-dimensional rambutan-like NiCo2O4 microspheres have been successfully coated onto surface of carbon nanofibers (CNFs) to form NiCo2O4–CNFs hybrids. The composition and microstructure of NiCo2O4–CNFs were characterized by the field-emission scanning elec-tronmicroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray diffractometer. The obtained NiCo2O4–CNFs exhibited a specific capacity of 160 mAh/g at 1 mA/cm2 in 2 M potassium hydroxide aqueous solution. The specific capacity gradually increases with the increasing of cycles; and after 3000 cycles, the specific capacity still can be remained over 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Chang, J. Sun, C. Xu, H. Xu, and L. Gao: Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. Nanoscale 4, 6786 (2012).

    Article  CAS  Google Scholar 

  2. G. Zhang, and X. Lou: General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976 (2013).

    Article  CAS  Google Scholar 

  3. Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai, and P. Ajayan: Bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 24, 125 (2014).

    Article  CAS  Google Scholar 

  4. M. Yu, W. Qiu, F. Wang, and Y. Tong: Three dimensional architectures: design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 3, 15792 (2015).

    Article  CAS  Google Scholar 

  5. Y. Wang, A. Pan, Q. Zhu, Z. Nie, Y. Zhang, Y. Tang, S. Liang, and G. Cao: Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J. Power Sources 272, 107 (2014).

    Article  CAS  Google Scholar 

  6. M.R. Alenezi, S.J. Henley, N.G. Emerson, and S.R.P. Silva: From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235 (2014).

    Article  CAS  Google Scholar 

  7. J. Wang, H.L. Xin, J. Zhu, S. Liu, Z. Wu, and D. Wang: 3D hollow structured Co2FeO4/MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 3, 1601 (2015).

    Article  CAS  Google Scholar 

  8. M. Yang and X. Jin: Facile synthesis of Zn2GeO4 nanorods toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Cent. South Univ. 7, 2837 (2014).

    Article  Google Scholar 

  9. G. Jiang, Z. Wei, H. Chen, X. Du, L. Li, Y. Liu, Q. Huang, and W. Chen: Preparation of novel carbon nanofibers with BiOBr and AgBr decorating for photocatalytic degradation of rhodamine B. RSC Adv. 5, 30433 (2015).

    Article  CAS  Google Scholar 

  10. G. Jiang, B. Tang, H. Chen, Y. Liu, L. Li, Q. Huang, and W. Chen: Controlled growth of hexagonal Zn2GeO4 nanorods on carbon fibers for photocatalytic oxidation of p-toluidine. RSC Adv. 2015 5, 25801 (2015).

    CAS  Google Scholar 

  11. G. Jiang, X. Li, Z. Wei, T. Jiang, X. Du, and W. Chen: Growth of N-doped BiOBr nanosheets on carbon fibers for high efficient photocatalytic degradation of organic pollutants under visible light irradiation. Powder. Technol. 260, 84 (2014).

    Article  CAS  Google Scholar 

  12. H. Chen, G. Jiang, W. Yu, D. Liu, Y. Liu, L. Li, Q. Huang, and Z. Tong: Electrospun carbon nanofibers coated with urchinlike ZnCo2O4 nano-sheets as a flexible electrode material. J. Mater. Chem. A 4, 5958 (2016).

    Article  CAS  Google Scholar 

  13. L. Zhang and H. Gong: A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors. Sci. Rep. 5, 18108 (2015).

    Article  CAS  Google Scholar 

  14. M. Yu, Y. Ma, J. Liu, and S. Li: Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for superca-pacitor electrodes. Carbon 87, 98 (2015).

    Article  CAS  Google Scholar 

  15. F. Wu, X. Ma, J. Feng, Y. Qian, and S. Xiong: 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J. Mater. Chem. A 2, 11597 (2014).

    Article  CAS  Google Scholar 

  16. S.G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, and R.-S. Liu: Highperformance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 6, 22701 (2014).

    Article  CAS  Google Scholar 

  17. B. Wang, X. Li, B. Luo, L. Hao, M. Zhou, X. Zhang, Z. Fan, and L. Zhi: Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv. Mater. 27, 1526 (2015).

    Article  Google Scholar 

  18. X. Liu, J. Zhang, W. Si, L. Xi, B. Eichler, C. Yan, and O.G. Schmidt: Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nano-membranes for Li-ion batteries with long cycle life. ACS Nano 9, 1198 (2015).

    Article  CAS  Google Scholar 

  19. D. Li, L. Ding, S. Wang, D. Cai, and H. Wang: Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J. Mater. Chem. A 2, 5625 (2014).

    Article  CAS  Google Scholar 

  20. B. Guan, D. Guo, L. Hu, G. Zhang, T. Fu, W. Ren, J. Li, and Q. Li: Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for highperformance asymmetric supercapacitors. J. Mater. Chem. A 2, 16116 (2014).

    Article  CAS  Google Scholar 

  21. L. Shen, L. Yu, X. Yu, X. Zhang, and X.W. Lou: Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868 (2015).

    Article  CAS  Google Scholar 

  22. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, and X.W. Lou: Ultrathin mes-oporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012).

    Article  CAS  Google Scholar 

  23. H. Van, C. Lamiel, and J.-J. Shim: Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapaci-tors. Mater. Lett. 170, 105 (2016).

    Article  Google Scholar 

  24. W. Xiong, Y. Gao, X. Wu, X. Hu, D. Lan, Y. Chen, X. Pu, Y. Zeng, J. Su, and Z. Zhu: Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416 (2014).

    Article  CAS  Google Scholar 

  25. L. Li, S.-H. Chai, S. Dai, and A. Manthiram: Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).

    Article  CAS  Google Scholar 

  26. B. Li, J. Feng, Y. Qian, and S. Xiong: Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3, 10336 (2015).

    Article  CAS  Google Scholar 

  27. J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong, and Z. Wang: Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79, 577 (2014).

    Article  CAS  Google Scholar 

  28. J. Li, S. Xiong, Y. Liu, Z. Ju, and Y. Qian: High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 981 (2013).

    Article  CAS  Google Scholar 

  29. Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou, X. He, F. Lu, M. Jing, B. Tang, and X. Ji: High capacity NiCo2O4 nanorods as electrode materials for superca-pacitor. J. Alloys Compd. 617, 988 (2014).

    Article  CAS  Google Scholar 

  30. L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, and D. Xiao: Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. J. Power Sources 261, 317 (2014).

    Article  CAS  Google Scholar 

  31. J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, and Y. Gogotsi: Facile fabrication of MWCNT doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J. Mater. Chem. A 1, 1963 (2013).

    Article  CAS  Google Scholar 

  32. B. Liu, Y. Zhang, and L. Tang: X-ray photoelectron spectroscopic studies of Ba0. 5Sr0.5Co0.8Fe0.2O3-d cathode for solid oxide fuel cells. Int. J. Hydrog. Energy 34, 435 (2009).

    Article  CAS  Google Scholar 

  33. X. Zhou, G. Chen, J. Tang, Y. Ren, and J. Yang: One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J. Power Sources 299, 97 (2015).

    Article  CAS  Google Scholar 

  34. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Rios, and F.J. Berry: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 153, 74 (2000).

    Article  CAS  Google Scholar 

  35. J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur: Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319 (2000).

    Article  CAS  Google Scholar 

  36. H. Chen, G. Jiang, W. Yu, D. Liu, Y. Liu, L. Li, Q. Huang, Z. Tong, and W. Chen: Preparation of electrospun ZnS-loaded hybrid carbon nanofi-bericmembranes for photocatalytic applications. Powder Technol. 298, 1 (2016).

    Article  CAS  Google Scholar 

  37. T. Brousse, D. Bélanger, and J. Long: To be or not to be pseudocapacitive? batteries and energy storage. J. Electrochem. Soc. 162, A5185 (2015).

    Article  CAS  Google Scholar 

  38. T. Huang, C. Zhao, L. Wu, X. Lang, K. Liu, and Z. Hu: 3D network-like porous MnCo2O4 by the sucrose-assisted combustion method for highperformance supercapacitors. Ceram. Int. 43, 1968 (2017).

    Article  CAS  Google Scholar 

  39. M. Yu, H. Sun, X. Sun, F. Lu, G. Wang, T. Hu, H. Qiu, and J. Lian: Hierarchical Al-doped and hydrogenated ZnO nanowire@MnO2 ultra thin nanosheet core/shell arrays for high performance supercapacitor electrode. Int. J. Electrochem. Sci. 8, 2313 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51373155), Collaborative Innovation Center for Modern Textile Technology of Zhejiang Province (2011-Program) (Grant no. 20160202) and “521 Talents Training Plan” in Zhejiang Sci-Tech University (ZSTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jiang, G., Yu, W. et al. Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials. MRS Communications 7, 90–96 (2017). https://doi.org/10.1557/mrc.2017.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.11

Navigation