Skip to main content
Log in

Temperature-dependent nanoindentation response of materials

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

It is of the uttermost interest to understand the mechanical performance and deformation mechanisms contributing to small-scale plasticity of materials in micro/nanoelectromechanical systems at their service temperatures, which are usually above room temperature. In recent years, high-temperature nanoindentation experiments have emerged as a reliable approach to characterize the deformation behavior of materials at the nano and submicron scale. In this review, we highlight the role of the temperature in nanoindentation response of a wide variety of materials, with a particular focus on the thermally-activated deformation mechanisms in crystalline and non-crystalline materials under the indenter, e.g., dislocation processes, shear transformation zone, and phase transformations. A brief survey of the temperature-dependent nanoindentation elastic modulus, hardness, and creep behavior of materials is also provided. We also discuss experimental methods for correctly measuring the mechanical properties of materials at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Table I

Similar content being viewed by others

References

  1. W.K. Liu, E.G. Karpov, and H.S. Park: Nano mechanics and materials: theory, multiscale methods and applications (John Wiley & Sons, England, 2006).

    Google Scholar 

  2. B.D. Beake and J.F. Smith: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 2179–2186 (2002).

    CAS  Google Scholar 

  3. J. Wheeler, D. Armstrong, W. Heinz, and R. Schwaiger: High temperature nanoindentation: the state of the art and future challenges. Current Opinion Solid State Mater. Sci. 19, 354–366 (2015).

    Google Scholar 

  4. W. Kang, M. Merrill, and J.M. Wheeler: In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9, 2666–2688 (2017).

    CAS  Google Scholar 

  5. J.C. Trenkle, C.E. Packard, and C.A. Schuh: Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81, 073901–073914 (2010).

    Google Scholar 

  6. J. Wheeler, P. Brodard, and J. Michler: Elevated temperature, in situ indentation with calibrated contact temperatures. Philos. Mag. 92, 3128–3141 (2012).

    CAS  Google Scholar 

  7. J. Wheeler and J. Michler: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103–045118 (2013).

    CAS  Google Scholar 

  8. C.A. Schuh, C.E. Packard, and A.C. Lund: Nanoindentation and contactmode imaging at high temperatures. J.Mater. Res. 21, 725–736 (2006).

    CAS  Google Scholar 

  9. C.E. Packard, J.M. Wheeler, J.C. Trenkle, and C.A. Schuh: Nanoindentation: high temperature. In Reference Module in Materials Science and Materials Engineering (Elsevier, 2016).

    Google Scholar 

  10. C. Schuh, J. Mason, A. Lund, and A. Hodge. High temperature nanoindentation for the study of flow defects. in MRS Proceedings (Cambridge University Press, 2004).

    Google Scholar 

  11. M.C. Wingert, J. Zheng, S. Kwon, and R. Chen: Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31, 113003 (2016).

    Google Scholar 

  12. P.E. Hopkins, M. Ding, and J. Poon: Contributions of electron and phonon transport to the thermal conductivity of GdFeCo and TbFeCo amorphous rare-earth transition-metal alloys. J.Appl. Phys. 111, 103533 (2012).

    Google Scholar 

  13. S.Z. Chavoshi, S. Goel, and X. Luo: Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Model. Simul. Mater. Sci. Eng. 24, 015002 (2015).

    Google Scholar 

  14. S.Z. Chavoshi, S. Goel, and X. Luo: Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J.Manuf. Process. 23, 201–210 (2016).

    Google Scholar 

  15. S.Z. Chavoshi and X. Luo: An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comput. Mater. Sci. 113, 1–10 (2016).

    CAS  Google Scholar 

  16. S.Z. Chavoshi and X. Luo: Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC. RSC Adv. 6, 71409–71424 (2016).

    CAS  Google Scholar 

  17. S.Z. Chavoshi, S. Xu, and X. Luo: Dislocation-mediated plasticity in silicon during nanometric cutting: a molecular dynamics simulation study. Mater. Sci. Semicond. Process. 51, 60–70 (2016).

    CAS  Google Scholar 

  18. S.Z. Chavoshi and X. Luo: Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures. Mater. Sci. Eng.: A 654, 400–417 (2016).

    CAS  Google Scholar 

  19. H. Mathur, V. Maier-Kiener, and S. Korte-Kerzel: Deformation in the γ-Mg 17 Al 12 phase at 25-278° C. Acta Mater. 113, 221–229 (2016).

    CAS  Google Scholar 

  20. L. Shen, Y. Wu, S. Wang, and Z. Chen: Creep behavior of Sn-Bi solder alloys at elevated temperatures studied by nanoindentation. J.Mater. Sci., Mater. Electron. 28, 4114–4124 (2017).

    CAS  Google Scholar 

  21. X. Kong, X. Kong, F. Sun, F. Sun, M. Yang, M. Yang, Y. Liu, and Y. Liu: High temperature creep properties of low-Ag Cu/Sn-Ag-Cu-Bi-Ni/Cu solder joints by nanoindentation method. Solder. Surf. Mount Technol. 28, 167–174 (2016).

    Google Scholar 

  22. K. Rajulapati, M. Biener, J. Biener, and A. Hodge: Temperature dependence of the plastic flow behavior of tantalum. Philos. Mag. Lett. 90, 35–42 (2010).

    CAS  Google Scholar 

  23. O. Franke, J. Alcalá, R. Dalmau, Z.C. Duan, J. Biener, M. Biener, and A. M. Hodge: Incipient plasticity of single-crystal tantalum as a function of temperature and orientation. Philos. Mag. 95, 1866–1877 (2015).

    CAS  Google Scholar 

  24. G.I. Taylor: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Ser. A, Containing Papers Math. Phys. Character 145, 362–387 (1934).

    CAS  Google Scholar 

  25. K. Durst, B. Backes, O. Franke, and M. Göken: Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547–2555 (2006).

    CAS  Google Scholar 

  26. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998).

    CAS  Google Scholar 

  27. X. Qiu, Y. Huang, W. Nix, K. Hwang, and H. Gao: Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater. 49, 3949–3958 (2001).

    CAS  Google Scholar 

  28. A.C. Lund, A.M. Hodge, and C.A. Schuh: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362–1364 (2004).

    CAS  Google Scholar 

  29. C. Schuh, J. Mason, and A. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617–621 (2005).

    CAS  Google Scholar 

  30. J. Mason, A. Lund, and C. Schuh: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).

    Google Scholar 

  31. M. Haghshenas, V. Bhakhri, R. Oviasuyi, and R. Klassen: Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium. MRS Commun. 5, 513–518 (2015).

    CAS  Google Scholar 

  32. I.-C. Choi, C. Brandl, and R. Schwaiger: Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater. 140, 107–115 (2017).

    CAS  Google Scholar 

  33. M.-M. Primorac, M.D. Abad, P. Hosemann, M. Kreuzeder, V. Maier, and D. Kiener: Elevated temperature mechanical properties of novel ultra-fine grained Cu-Nb composites. Mater. Sci. Eng.: A 625, 296–302 (2015).

    CAS  Google Scholar 

  34. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strainrate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J.Mater. Res. 26, 1421–1430 (2011).

    CAS  Google Scholar 

  35. J. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng.: A 585, 108–113 (2013).

    CAS  Google Scholar 

  36. N. Li, L. Liu, K. Chan, Q. Chen, and J. Pan: Deformation behavior and indentation size effect of Au 49 Ag 5.5 Pd 2.3 Cu 26.9 Si 16.3 bulk metallic glass at elevated temperatures. Intermetallics 17, 227–230 (2009).

    Google Scholar 

  37. B. Yang, J. Wadsworth, and T.-G. Nieh: Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation. Appl. Phys. Lett. 90, 061911 (2007).

    Google Scholar 

  38. A. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    CAS  Google Scholar 

  39. A. Argon and L.T. Shi: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31, 499–507 (1983).

    Google Scholar 

  40. R. Zallen: The physics of amorphous solids (John Wiley & Sons, Weinheim, 2008).

    Google Scholar 

  41. C.A. Schuh, A.C. Lund, and T. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879–5891 (2004).

    CAS  Google Scholar 

  42. C.E. Packard, J. Schroers, and C.A. Schuh: In situ measurements of surface tension-driven shape recovery in a metallic glass. Scr. Mater. 60, 1145–1148 (2009).

    CAS  Google Scholar 

  43. D.L. Henann and L. Anand: Surface tension-driven shape-recovery of micro/nanometer-scale surface features in a Pt 57.5 Ni 5.3 Cu 14.7 P22.5 metallic glass in the supercooled liquid region: a numerical modeling capability. J.Mech. Phys. Solids 58, 1947–1962 (2010).

    CAS  Google Scholar 

  44. G. Kumar and J. Schroers: Write and erase mechanisms for bulk metallic glass. Appl. Phys. Lett. 92, 031901 (2008).

    Google Scholar 

  45. J. Wheeler, R. Raghavan, and J. Michler: In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Mater. Sci. Eng.: A 528, 8750–8756 (2011).

    CAS  Google Scholar 

  46. A. Bhattacharyya, G. Singh, K.E. Prasad, R. Narasimhan, and U. Ramamurty: On the strain rate sensitivity of plastic flow in metallic glasses. Mater. Sci. Eng.: A 625, 245–251 (2015).

    CAS  Google Scholar 

  47. S. Minomura and H. Drickamer: Pressure induced phase transitions in silicon, germanium and some III-V compounds. J.Phys. Chem. Solids 23, 451–456 (1962).

    CAS  Google Scholar 

  48. D. Ge, V. Domnich, and Y. Gogotsi: High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation. J.Appl. Phys. 93, 2418–2423 (2003).

    CAS  Google Scholar 

  49. R. Piltz, J. Maclean, S. Clark, G. Ackland, P. Hatton, and J. Crain: Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072–4085 (1995).

    CAS  Google Scholar 

  50. S. Ruffell, J. Bradby, and J. Williams: High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon. Appl. Phys. Lett. 89, 091919 (2006).

    Google Scholar 

  51. S.Z. Chavoshi, S.C. Gallo, H. Dong, and X. Luo: High temperature nanoscratching of single crystal silicon under reduced oxygen condition. Mater. Sci. Eng.: A 684, 385–393 (2017).

    CAS  Google Scholar 

  52. S. Bhuyan, J. Bradby, S. Ruffell, B. Haberl, C. Saint, J. Williams, and P. Munroe: Phase stability of silicon during indentation at elevated temperature: evidence for a direct transformation from metallic Si-II to diamond cubic Si-I. MRS Commun. 2, 9–12 (2012).

    CAS  Google Scholar 

  53. S. Ruffell, J. Bradby, J. Williams, D. Munoz-Paniagua, S. Tadayyon, L. Coatsworth, and P. Norton: Nanoindentation-induced phase transformations in silicon at elevated temperatures. Nanotechnology 20, 135603–135608 (2009).

    CAS  Google Scholar 

  54. M. Kiran, B. Haberl, J. Williams, and J. Bradby: Temperature dependent deformation mechanisms in pure amorphous silicon. J.Appl. Phys. 115, 113511 (2014).

    Google Scholar 

  55. R.K. Singh, P. Munroe, and M. Hoffman: Effect of temperature on metastable phases induced in silicon during nanoindentation. J.Mater. Res. 23, 245–249 (2008).

    CAS  Google Scholar 

  56. V. Domnich, Y. Aratyn, W.M. Kriven, and Y. Gogotsi: Temperature dependence of silicon hardness: experimental evidence of phase transformations. Rev. Adv. Mater. Sci. 17, 33–41 (2008).

    CAS  Google Scholar 

  57. M. Kiran, T. Tran, L. Smillie, B. Haberl, D. Subianto, J. Williams, and J. Bradby: Temperature-dependent mechanical deformation of silicon at the nanoscale: phase transformation versus defect propagation. J.Appl. Phys. 117, 205901 (2015).

    Google Scholar 

  58. L. Vandeperre, F. Giuliani, S. Lloyd, and W. Clegg: The hardness of silicon and germanium. Acta Mater. 55, 6307–6315 (2007).

    CAS  Google Scholar 

  59. S. Xiao and P. Pirouz: On diamond-hexagonal germanium. J.Mater. Res. 7, 1406–1412 (1992).

    CAS  Google Scholar 

  60. C.S. Menoni, J.Z. Hu, and I.L. Spain: Germanium at high pressures. Phys. Rev. B 34, 362 (1986).

    CAS  Google Scholar 

  61. X. Huang, J. Nohava, B. Zhang, and A. Ramirez: Nanoindentation of NiTi shape memory thin films at elevated temperatures. Int. J. Smart Nano Mater. 2, 39–49 (2011).

    CAS  Google Scholar 

  62. X.-G. Ma and K. Komvopoulos: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films. J.Mater. Res. 20, 1808–1813 (2005).

    CAS  Google Scholar 

  63. K. Komvopoulos and X.-G. Ma: Pseudoelasticity of martensitic titaniumnickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).

    Google Scholar 

  64. Y. Li, X. Fang, S. Lu, Q. Yu, G. Hou, and X. Feng: Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation. Mater. Sci. Eng.: A 678, 65–71 (2016).

    CAS  Google Scholar 

  65. G. Feng and A. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J.Mater. Res. 17, 660–668 (2002).

    CAS  Google Scholar 

  66. J.A. Rogers, A.A. Maznev, M.J. Banet, and K.A. Nelson: Optical generation and characterization of acoustic waves in thin films: fundamentals and applications. Annu. Rev. Mater. Sci. 30, 117–157 (2000).

    CAS  Google Scholar 

  67. C.E. Beck, F. Hofmann, J.K. Eliason, A.A. Maznev, K.A. Nelson, and D. E. Armstrong: Correcting for contact area changes in nanoindentation using surface acoustic waves. Scr. Mater. 128, 83–86 (2017).

    CAS  Google Scholar 

  68. N. Fujisawa and M.V. Swain: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J.Mater. Res. 22, 893–899 (2007).

    CAS  Google Scholar 

  69. B. Haberl, L.B.B. Aji, J. Williams, and J.E. Bradby: The indentation hardness of silicon measured by instrumented indentation: what does it mean? J. Mater. Res. 27, 3066–3072 (2012).

    CAS  Google Scholar 

  70. T. Tsui and G. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J.Mater. Res. 14, 292–301 (1999).

    CAS  Google Scholar 

  71. J.S.-L. Gibson, S.G. Roberts, and D.E. Armstrong: High temperature indentation of helium-implanted tungsten. Mater. Sci. Eng.: A 625, 380–384 (2015).

    CAS  Google Scholar 

  72. A. Harris, B. Beake, D. Armstrong, and M. Davies: Development of high temperature nanoindentation methodology and its application in the nanoindentation of polycrystalline tungsten in vacuum to 950° C. Exp. Mech. 57, 1115–1126 (2017).

    CAS  Google Scholar 

  73. M.R. de Figueiredo, M.D. Abad, A.J. Harris, C. Czettl, C. Mitterer, and P. Hosemann: Nanoindentation of chemical-vapor deposited Al 2 O 3 hard coatings at elevated temperatures. Thin Solid Films 578, 20–24 (2015).

    Google Scholar 

  74. R. Ctvrtlik, M.S. Al-Haik, and V. Kulikovsky: Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. J. Mater. Sci. 50, 1553–1564 (2015).

    CAS  Google Scholar 

  75. N. Rohbeck, D. Tsivoulas, I.P. Shapiro, P. Xiao, S. Knol, J.-M. Escleine, and M. Perez: In-situ nanoindentation of irradiated silicon carbide in TRISO particle fuel up to 500° C. J. Nucl. Mater. 465, 692–694 (2015).

    CAS  Google Scholar 

  76. E. Broitman, L. Tengdelius, U.D. Hangen, J. Lu, L. Hultman, and H. Högberg: High-temperature nanoindentation of epitaxial ZrB 2 thin films. Scr. Mater. 124, 117–120 (2016).

    CAS  Google Scholar 

  77. J.-Y. Lu, H. Ren, D.-M. Deng, Y. Wang, K.J. Chen, K.-M. Lau, and T.-Y. Zhang: Thermally activated pop-in and indentation size effects in GaN films. J.Phys. D: Appl. Phys. 45, 085301 (2012).

    Google Scholar 

  78. T. Nieh, C. Iwamoto, Y. Ikuhara, K. Lee, and Y. Chung: Comparative studies of crystallization of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy. Intermetallics 12, 1183–1189 (2004).

    CAS  Google Scholar 

  79. V. Marques, C. Johnston, and P. Grant: Nanomechanical characterization of Sn-Ag-Cu/Cu joints—Part 1: young’s modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater. 61, 2460–2470 (2013).

    CAS  Google Scholar 

  80. V. Marques, B. Wunderle, C. Johnston, and P. Grant: Nanomechanical characterization of Sn-Ag-Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 61, 2471–2480 (2013).

    CAS  Google Scholar 

  81. J.S.-L. Gibson, S. Schröders, C. Zehnder, and S. Korte-Kerzel: On extracting mechanical properties from nanoindentation at temperatures up to 1000° C. Extreme Mech. Lett. 17, 43–49 (2017).

    Google Scholar 

  82. A. Prasitthipayong, S. Vachhani, S. Tumey, A. Minor, and P. Hosemann: Indentation size effect in unirradiated and ion-irradiated 800H steel at high temperatures. Acta Mater. 144, 896–904 (2018).

    CAS  Google Scholar 

  83. A.M. Wood and T. Clyne: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607–5615 (2006).

    CAS  Google Scholar 

  84. V. Maier, A. Hohenwarter, R. Pippan, and D. Kiener: Thermally activated deformation processes in body-centered cubic Cr-How microstructure influences strain-rate sensitivity. Scr. Mater. 106, 42–45 (2015).

    CAS  Google Scholar 

  85. A. Leitner, V. Maier-Kiener, J. Jeong, M. Abad, P. Hosemann, S. Oh, and D. Kiener: Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104–116 (2016).

    CAS  Google Scholar 

  86. M. Kreuzeder, M.-D. Abad, M.-M. Primorac, P. Hosemann, V. Maier, and D. Kiener: Fabrication and thermo-mechanical behavior of ultra-fine porous copper. J. Mater. Sci. 50, 634–643 (2015).

    CAS  Google Scholar 

  87. J.R. Trelewicz and C.A. Schuh: Hot nanoindentation of nanocrystalline Ni-W alloys. Scr. Mater. 61, 1056–1059 (2009).

    CAS  Google Scholar 

  88. V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter: Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. J.Mater. Res. 32, 2658–2667 (2017).

    CAS  Google Scholar 

  89. K. Kormout, P. Ghosh, V. Maier-Kiener, and R. Pippan: Deformation mechanisms during severe plastic deformation of a Cu Ag composite. J.Alloys Compd. 695, 2285–2294 (2017).

    CAS  Google Scholar 

  90. Q. Wu, Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma, and S. Fu: Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Ind. Crops Prod. 48, 28–35 (2013).

    CAS  Google Scholar 

  91. J. Milhans, D. Li, M. Khaleel, X. Sun, M.S. Al-Haik, A. Harris, and H. Garmestani: Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures. J.Power Sources 196, 5599–5603 (2011).

    CAS  Google Scholar 

  92. U. Hangen, C.L. Chen, and A. Richter: Mechanical characterization of PM2000 oxide-dispersion-strengthened alloy by high temperature nanoindentation. Adv. Eng. Mater. 17, 1683–1690 (2015).

    CAS  Google Scholar 

  93. Y. Li, X. Fang, B. Xia, and X. Feng: In situ measurement of oxidation evolution at elevated temperature by nanoindentation. Scr. Mater. 103, 61–64 (2015).

    CAS  Google Scholar 

  94. Y. Li, S. Feng, W. Wu, and F. Li: Temperature dependent mechanical property of PZT film: an investigation by nanoindentation. PLoS ONE 10, e0116478 (2015).

  95. S. Koch, M.D. Abad, S. Renhart, H. Antrekowitsch, and P. Hosemann: A high temperature nanoindentation study of Al-Cu wrought alloy. Mater. Sci. Eng.: A 644, 218–224 (2015).

    CAS  Google Scholar 

  96. F. Gao, H. Nishikawa, T. Takemoto, and J. Qu: Mechanical properties versus temperature relation of individual phases in Sn-3.0 Ag-0.5 Cu leadfree solder alloy. Microelectron. Reliab. 49, 296–302 (2009).

    CAS  Google Scholar 

  97. R. Seltzer, J.K. Kim, and Y.W. Mai: Elevated temperature nanoindentation behaviour of polyamide 6. Polym. Int. 60, 1753–1761 (2011).

    CAS  Google Scholar 

  98. J. Fulcher, Y. Lu, G. Tandon, and D. Foster: Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym. Test. 29, 544–552 (2010).

    CAS  Google Scholar 

  99. M. Hinz, A. Kleiner, S. Hild, O. Marti, U. Dürig, B. Gotsmann, U. Drechsler, T. Albrecht, and P. Vettiger: Temperature dependent nano indentation of thin polymer films with the scanning force microscope. Eur. Polym. J. 40, 957–964 (2004).

    CAS  Google Scholar 

  100. S. Sills, H. Fong, C. Buenviaje, M. Sarikaya, and R.M. Overney: Thermal transition measurements of polymer thin films by modulated nanoindentation. J. Appl. Phys. 98, 014302 (2005).

    Google Scholar 

  101. P.S. Phani and W. Oliver: A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 111, 31–38 (2016).

    CAS  Google Scholar 

  102. G. Cheng, K.S. Choi, X. Hu, and X. Sun: Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Mater. Sci. Eng.: A 652, 384–395 (2016).

    CAS  Google Scholar 

  103. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 59, 4387–4394 (2011).

    CAS  Google Scholar 

  104. T.-H. Ahn, C.-S. Oh, D. Kim, K. Oh, H. Bei, E.P. George, and H. Han: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540–543 (2010).

    CAS  Google Scholar 

  105. B. He, M. Huang, Z. Liang, A. Ngan, H. Luo, J. Shi, W. Cao, and H. Dong: Nanoindentation investigation on the mechanical stability of individual austenite grains in a medium-Mn transformation-induced plasticity steel. Scr. Mater. 69, 215–218 (2013).

    CAS  Google Scholar 

  106. K.R. Gadelrab, G. Li, M. Chiesa, and T. Souier: Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation. J.Mater. Res. 27, 1573–1579 (2012).

    CAS  Google Scholar 

  107. J. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler: Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. Int. J. Plast. 40, 140–151 (2013).

    CAS  Google Scholar 

  108. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  109. J. Field and M. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297–306 (1993).

    CAS  Google Scholar 

Download references

Acknowledgments

SZC would like to express his sincere gratitude for the financial support from the BIAM-Imperial Centre for Materials Characterization, Processing, and Modeling at Imperial College London. The work of SX was supported in part by the Elings Prize Fellowship in Science offered by the California NanoSystems Institute (CNSI) on the UC Santa Barbara campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zare Chavoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavoshi, S.Z., Xu, S. Temperature-dependent nanoindentation response of materials. MRS Communications 8, 15–28 (2018). https://doi.org/10.1557/mrc.2018.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.19

Navigation