Skip to main content
Log in

Diatoms as potential “green” nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Diatoms are unicellular, eukaryotic microalgae inhabiting nearly all aquatic habitats. They are famous for their micro-and nanopatterned silica-based cell walls, which are envisioned for various technologic purposes. Within this review article, we summarize recent in vivo modifications of diatom biosilica with respect to the following questions: (i) Which metals are taken up by diatoms and eventually processed into nano-particles (NPs)? (ii) Are these NPs toxic for the diatoms and—if so—what factors influence toxicity? (iii) What is the mechanism underlying IMP synthesis and subsequent metabolism? (iv) How can the obtained materials be useful for materials science?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. F.E. Round, R.M. Crawford, and D.G. Mann: The Diatoms (Cambridge Univ. Press, Cambridge, England, 1990).

    Google Scholar 

  2. V. E. Armbrust: The life of diatoms in the world’s oceans. Nature 459, 185 (2009).

    Article  CAS  Google Scholar 

  3. C. Bowler, A. De Marino, and A. Falciatore: Diatom cell division in an environmental context. Curr. Opin. Plant Biol. 13, 623 (2010).

    Article  CAS  Google Scholar 

  4. V. Stonik and I. Stonik: Low-molecular-weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar. Drugs 13, 3672 (2015).

    Article  CAS  Google Scholar 

  5. P. Raven, R. Evert, and S. Eichhorn: Biologie der Pflanzen (De Gruyter, Berlin, Germany, 2006).

    Google Scholar 

  6. A. Bozarth, U.G. Maier, and S. Zauner: Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82, 195 (2009).

    Article  CAS  Google Scholar 

  7. C. Fischer: Materialwissenschaftliches Potential biologischer Silikate: Zucht verschiedener Mikroalgen—Charakterisierung und Anwendung von Biosilikaten. Dissertation. TU Dresden, Dresden, Germany (2017).

    Google Scholar 

  8. J. Parkinson and R. Gordon: Beyond micromachining: the potential of diatoms. Nanotechnology 17, 190 (1999).

    CAS  Google Scholar 

  9. N. Kroger and N. Poulsen: Diatoms-from cell wall biogenesis to nanotech-nology. Annu. Rev. Genet. 42, 83 (2008).

    Article  CAS  Google Scholar 

  10. D. Losic, J.G. Mitchell, and N. Voelcker: Diatomaceous lessons in nano-technology and advanced materials. Adv. Mater. 21, 2974 (2009).

    Google Scholar 

  11. C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer: The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ. Sci. 4, 3930 (2011).

    Article  CAS  Google Scholar 

  12. N. Nassif and J. Livage: From diatoms to silica-based biohybrids. Chem. Soc. Rev. 40, 849 (2011).

    Article  CAS  Google Scholar 

  13. D.Y. Zhang, Y. Wang, J. Cai, J.F. Pan, X.G. Jiang, and Y.G. Jiang: Bio-manufacturing technology based on diatom micro- and nanostruc-ture. Chin. Sci. Bull. 57, 3836 (2012).

    Article  CAS  Google Scholar 

  14. C. Jeffryes, S.N. Agathos, and G. Rorrer: Biogenic nanomaterials from photosynthetic microorganisms. Curr. Opin. Biotechnol. 33, 23 (2015).

    Article  CAS  Google Scholar 

  15. R. Ragni, S.R. Cicco, D.Vona, and G.M. Farinola: Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv. Mater. (2017). doi: 10.1002/adma.201704289.

    Google Scholar 

  16. Y. Fang, J.D. Berrigan, Y. Cai, S. R. Marder, and K. H. Sandhage: Syntheses of nanostructured Cu- and Ni-based micro-assemblies with selectable 3-D hierarchical biogenic morphologies. J. Mater. Chem. 22, 1305 (2012).

    Article  CAS  Google Scholar 

  17. D. Losic, J. Mitchell, and N. Voelcker: Diatomaceous lessons in nanotech-nology and advanced materials. Chem. Commun. 39, 4905 (2005).

    Article  CAS  Google Scholar 

  18. Y. Fang, Q. Wu, M. B. Dickerson, Y. Cai, S. Shian, J. D. Berrigan, N. Poulsen, N. Kroger, and K. H. Sandhage: Protein-mediated layer-by-layer syntheses of freestanding microscale titania structures with biologically assembled 3-D morphologies. Chem. Mater. 21, 5704 (2009).

    Article  CAS  Google Scholar 

  19. C. Fischer, M. Oschatz, W. Nickel, D. Leistenschneider, S. Kaskel, and E. Brunner: Bioinspired carbide-derived carbons with hierarchical pore structure for the absorptive removal of mercury from aqueous solution. Chem. Commun. 53, 4845 (2017).

    Article  CAS  Google Scholar 

  20. A. Jantschke, A.-K. Herrmann, V. Lesnyak, A. Eychmueller, and E. Brunner: Decoration of diatom biosilica with small (<10nm) noble metal and semiconductor nanoparticles: assembly, characterization and applications. Chem. Asian J. 7, 85 (2012).

    Article  CAS  Google Scholar 

  21. A. Jantschke, C. Fischer, R. Hensel, H. Braun, and E. Brunner: Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis. Nanoscale 6, 11637 (2014).

    Article  CAS  Google Scholar 

  22. C. Fischer, M. Adam, A. Mueller, E. Sperling, M. Wustmann, K.-H. Van Pee, S. Kaskel, and E. Brunner: Gold nanoparticle-decorated diatom biosilica: a favorable catalyst for the oxidation of D-glucose. ACS Omega 1, 1253 (2016).

    Article  CAS  Google Scholar 

  23. T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper: Diatoms as living photonic crystals. Appl. Phys. BIS, 257 (2004).

  24. M. Kucki and T. Fuhrmann-Lieker: Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites. J. R. Soc. Interface 9, 727 (2012).

    Article  CAS  Google Scholar 

  25. N. Poulsen, C. Berne, J. Spain, and N. Kroger: Silica immobilization of an enzyme via genetic engineering of the diatom Thalassiosira pseudonana Angew. Chem. Int. Ed. 46, 1843 (2007).

    Article  CAS  Google Scholar 

  26. V.C. Sheppard, A. Scheffel, N. Poulsen, and N. Kroger: Live diatom silica immobilization of multimeric and redox-active enzymes. Appl. Environ. Microbiol. 78, 211 (2012).

    Article  CAS  Google Scholar 

  27. M. Hildebrand, B.E. Volcani, W. Gassmann, and J.I. Schroeder: A gene family of silicon transporters. Nature 385, 688 (1997).

    Article  CAS  Google Scholar 

  28. M. Hildebrand, A. J. Alverson, and K. Thamatrakoln: Comparative sequence analysis of diatom silicon transporters: toward a mechanistic model of silicon transport. J. Phycol. 42, 822 (2006).

    Article  CAS  Google Scholar 

  29. F. Azam, B.B. Hemmingsen, and B. E. Volcani: Germanium incorporation into the silica of diatom cell walls. Arch. Mikrobiol. 92, 11 (1973).

    Article  CAS  Google Scholar 

  30. A.K. Davis and M. Hildebrand: A self-propagating system for Ge incorporation into nanostructured silica. Chem. Commun. 37, 4495 (2008).

    Article  CAS  Google Scholar 

  31. C. Jeffryes, T. Gutu, J. Jiao, and G. L. Rorrer: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mater. Sci. Eng. C 28, 107 (2008).

    Article  CAS  Google Scholar 

  32. B. C. Jeffryes, R. Solanki, Y. Rangineni, W. Wang, C. Chang, and G. L. Rorrer: Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv. Mater. 20, 2633 (2008).

    Article  CAS  Google Scholar 

  33. D. M. Ali, C. Divya, M. Gunasekaran, and N. Thajuddin: Biosynthesis and characterization of silicon-germanium oxide nanocomposite by diatom. Dig. J. Nanomater Biostruct. 6, 117 (2011).

    Google Scholar 

  34. C. Jeffryes, T. Gutu, J. Jiao, and G. L. Rorrer: Metabolic insertion of nanostructured TiO into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2, 2103 (2008).

    Article  CAS  Google Scholar 

  35. A.J. Van Bennekom, A.G.J. Buma, and R.F. Nolting: Dissolved aluminium in the Weddell-Scotia confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar. Chem. 35, 423 (1991).

    Article  Google Scholar 

  36. M. Gehlen, L. Beck, G. Calas, A.-M. Flank, A.J. Van Bennekom, and J.E. E. Van Beusekom: Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim. Cosmochim. Acta 66, 1601 (2002).

    Article  CAS  Google Scholar 

  37. S. Machill, L. Kbhler, S. Ueberlein, R. Hedrich, M. Kunaschk, S. Paasch, R. Schulze, and E. Brunner: Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris. Biometals 26, 141 (2013).

    Article  CAS  Google Scholar 

  38. L. Kbhler, S. Machill, A. Werner, C. Selzer, S. Kaskel, and E. Brunner: Are diatoms “Green” aluminosilicate synthesis microreactors for future catalyst production? Molecules, 22, 2232 (2017).

    Article  Google Scholar 

  39. R.M. Godinho, M.T. Cabrita, L.C. Alves, and T. Pinheiro: Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 348, 265 (2015).

    Article  CAS  Google Scholar 

  40. M.J. Ellwood and K.A. Hunter: The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 45, 1517 (2000).

    CAS  Google Scholar 

  41. M.J. Ellwood, and K.A. Hunter: Determination of the Zn/Si ratio in diatom opal: a method for the separation, cleaning and dissolution of diatoms. Mar. Chem. 66, 149 (1999).

    Article  CAS  Google Scholar 

  42. J. Kaden, S. I. Bruckner, S. Machill, C. Krafft, A. Pbppl, and E. Brunner: Iron incorporation in biosilica of the marine diatom Stephanopyxis turris: dispersed or clustered? Biometals 30, 71 (2017).

    Article  CAS  Google Scholar 

  43. X. Peng, L Manna, W.Yang, J. Wickham, E. Scher, A. Kadavanich.and A. P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  44. H. Goesmann and C. Feldmann: Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 1362 (2010).

    Article  CAS  Google Scholar 

  45. P. Zhao, N. Li, and D. Astruc: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638 (2013).

    Article  CAS  Google Scholar 

  46. C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin: Building devices from colloidal quantum dots. Science 353, 885 (2016).

    Article  CAS  Google Scholar 

  47. K. B. Narayanan and N. Sakthivel: Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169, 59 (2011).

    Article  CAS  Google Scholar 

  48. W. J. Crookes-Goodson, J. M. Slocik, and R. R. Naik: Bio-directed synthesis and assembly of nanomaterials. Chem. Soc. Rev. 37, 2403 (2008).

    Article  CAS  Google Scholar 

  49. I. R. Beattie and R. G. Haverkamp: Silver and gold nanoparticles in plants: sitesforthe reduction to metal. Metallomics 3, 628 (2011).

    Article  CAS  Google Scholar 

  50. J. L. Gardea-Torresdey, J. G. Parson, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. J. Yacarman: Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett. 2, 397 (2002).

    Article  CAS  Google Scholar 

  51. S. S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822 (2003).

    Article  CAS  Google Scholar 

  52. B. Greene, M. Hosea, R. McPherson, M. Henzl, M. D. Alexander, and D. W. Darnall: Interaction of gold (I) and gold (III) complexes with algal bio-mass. Environ. Sci. Technol. 20, 627 (1986).

    Article  CAS  Google Scholar 

  53. V. C. Verma, R. N. Kharwar, and A. C. Gange: Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5, 33 (2010).

    Article  CAS  Google Scholar 

  54. S. Basavaraja, S. D. Balaji, A. Lagashetty, A. H. Rajasab, and A. Venkataraman: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarlum semltectum. Mater. Res. Bull. 43, 1164 (2008).

    Article  CAS  Google Scholar 

  55. J. Jena, N. Pradhan, R. R. Nayak, B. P. Dash, L. B. Sukla, P. K. Panda, and B. K. Mishra: Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J. Microbiol. Biotechnol. 24, 522 (2014).

    Article  CAS  Google Scholar 

  56. V. Patel, D. Berthold, P. Puranik, and M. Gantar: Screening of cyanobac-teriaand microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 5, 112 (2015).

    Article  Google Scholar 

  57. H. Korbekandi, S. Iravani, and S. Abbasi: Production of nanoparticles using organisms. Grit. Rev. Biotechnol. 29, 279 (2009).

    Article  CAS  Google Scholar 

  58. N. Chakraborty, R. Pal, A. Ramaswami, D. Nayak, and S. Lahiri: Diatom: a potential bio-accumulator of gold. J. Radioanal. Nucl. Chem. 270, 645 (2006).

    Article  CAS  Google Scholar 

  59. A. Schrafel, G. Kratosova, M. Krautova, E. Dobrocka, and I. Vavra: Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J. Nanopart. Res. 13, 3207 (2011).

    Article  CAS  Google Scholar 

  60. P. Roychoudhury, C. Nandi, and R. Pal: Diatom-based biosynthesis of gold-silica nanocomposite and their DNA binding affinity. J. Appl. Phycol. 28, 2857 (2016).

    Article  CAS  Google Scholar 

  61. J. Jena, N. Pradhan, B. P. Dash, P. K. Panda, and B. K. Mishra: Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J. Saudi Chem. Soc. 19, 661 (2015).

    Article  Google Scholar 

  62. H. P. Borase, C. D. Patil, R. K. Suryawanshi, S. H. Koli, B. V. Mohite, G. Benelli, and S. V. Patil: Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity. Bioprocess Biosyst. Eng. 40, 1437 (2017).

    Article  CAS  Google Scholar 

  63. R. H. Lahr and P. J. Vikesland: Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellular biosynthesized gold nanoparticles. ACS Sustain. Chem. Eng. 2, 1599 (2014).

    Article  CAS  Google Scholar 

  64. N. Pytlik, J. Kaden, M. Finger, J. Naumann, S. Wanke, S. Machill, and E. Brunner: Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses. Algal Res. 28, 9 (2017).

    Article  Google Scholar 

  65. S. D. Conner and S. L. Schmid: Regulated portals of entry into the cell. Nature 422, 37 (2003).

    Article  CAS  Google Scholar 

  66. T. D. Pollard, W. C. Earnshaw, J. Lippincott-Schwartz, and G.T. Johnson: Cell Biology (Elsevier, Philadelphia, USA, 2008).

    Google Scholar 

  67. J. S. Lowe and A. P. G.: Human Histology (Elsevier, Philadelphia, USA, 2015).

    Google Scholar 

  68. A. Verma and F. Stellacci: Effect of surface properties on nanoparticle—cell interactions. Small 6, 12 (2010).

    Article  CAS  Google Scholar 

  69. S. Tatur, M. Maccarini, R. Barker, A. Nelson, and G. Fragneto: Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29, 6606 (2013).

    Article  CAS  Google Scholar 

  70. O. Harush-Frenkel, N. Debotton, S. Benita, and Y. Altschuler: Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353, 26 (2007).

    Article  CAS  Google Scholar 

  71. A. Huefner, W.-L. Kuan, R. A. Barker, and S. Mahajan: Intracellular SERS nanoprobes for distinction of different neuronal cell types. Nanoletters 13, 2463 (2013).

    Article  CAS  Google Scholar 

  72. A. Verma, O. Uzun, Y. Hu, Y. Hu, H. Han, N. Watson, S. Chen, D. J. Irvine, and F. Stellacci: Surface structure-regulated cell membrane penetration by monolayer protected nanoparticles. Nat. Mater. 7, 588 (2008).

    Article  CAS  Google Scholar 

  73. P. Nativo, I. A. Prior, and M. Brust: Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2, 1639 (2008).

    Article  CAS  Google Scholar 

  74. G. Sahay, D. Y. Alakhova, and A. V. Kabanov: Endocytosis of nanomedi-cines. J. Control Release 145, 182–195 (2010).

    Article  CAS  Google Scholar 

  75. D. Branco, A. Lima, S. F. P. Almeida, and E. Figueira: Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kutzing) W. Smith. Aquat. Toxicol. 99, 109 (2010).

    Article  CAS  Google Scholar 

  76. G. K. Bielmyer-Fraser, T. A. Jarvis, H. S. Lenihan, and R. J. Miller: Cellular partitioning of nanoparticulate versus dissolved metals in marine phyto-plankton. Environ. Sci. Technol. 48, 13443 (2014).

    Article  CAS  Google Scholar 

  77. A.-J. Miao and W. X. Wang: Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom. Environ. Sci. Technol. 41, 1777 (2007).

    Article  CAS  Google Scholar 

  78. G. Pletikapic, V. Zutic, I.V. Vrcek, and V. Svetlicic: Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. J. Mol. Recognit. 25, 309 (2012).

    Article  CAS  Google Scholar 

  79. A. Feurtet-Mazel, S. Mornet, L. Charron, N. Mesmer-Dudons, R. Maury-Brachet, and M. Baudrimont: Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ. Sci. Pollut. Res. 23, 4334 (2016).

    Article  CAS  Google Scholar 

  80. X. Peng, S. Palma, N. S. Fisher, and S. S. Wong: Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102, 186 (2011).

    Article  CAS  Google Scholar 

  81. E. Torres, A. Cid, C. Herrero, and J. Abalde: Effect of cadmium in growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water Air Soil Pollut. 117, 1 (2000).

    Article  CAS  Google Scholar 

  82. Y.-N. Chang, M. Zhang, L. Xia, J. Zhang, and G. Xing: The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 5, 2850 (2012).

    Article  CAS  Google Scholar 

  83. C. A. García-Negrete, J. Blasco, M. Volland, T. C. Rojas, M. Hampel, A. Lapresta-Fernandez, M. C. J. De Haro, M. Soto, and A. Fernandez: Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environ. Pollut. 174, 134 (2013).

    Article  CAS  Google Scholar 

  84. A. D. Burchardt, R. N. Carvalho, A. Valente, P. Nativo, D. Gilliland, C. P. Garc, R. Passarella, V. Pedroni, and T. Lettieri: Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcussp. Environ. Sci. Technol. 46, 11336 (2012).

    Article  CAS  Google Scholar 

  85. N. Manier, A. Bado-Nilles, P. Delalain, O. Aguerre-Chariol, and P. Pandard: Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 180, 63 (2013).

    Article  CAS  Google Scholar 

  86. I. Moreno-Garrido, S. Perez, and J. Blasco: Toxicity of silver and gold nanoparticles on marine microalgae. Mar. Environ. Res. 111, 60 (2015).

    Article  CAS  Google Scholar 

  87. A. Bour, F. Mouchet, L. Verneuil, L. Evariste, J. Silvestre, E. Pinelli, and L. Gauthier: Toxicity of CeO2 nanoparticles at different trophic levels—effects on diatoms, chironomids and amphibians. Chemosphere 120, 230 (2015).

    Article  CAS  Google Scholar 

  88. L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J.-C. Boutonnet, F. Bourdiol, T. Bortolamiol, D. Baque, L. Gauthier, and E. Pinelli: Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “a sticky story”. Nanotoxicology 9, 219 (2015).

    Article  CAS  Google Scholar 

  89. A. Miao, K. A. Schwehr, C. Xu, S. Zhang, Z. Luo, A. Quigg, and P. H. Santschi: The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 157, 3034 (2009).

    Article  CAS  Google Scholar 

  90. L. Clement, C. Hurel, and N. Marmier: Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90, 1083 (2013).

    Article  CAS  Google Scholar 

  91. P. Taylor: Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 75, 107 (1998).

    Article  CAS  Google Scholar 

  92. N. T. K. Thanh, N. Maclean, and S. Mahiddine: Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610 (2014).

    Article  CAS  Google Scholar 

  93. C. de M. Donega: Nanoparticles—Workhorses of Nanoscience (Springer, Berlin, Heidelberg, Germany, 2014).

    Google Scholar 

Download references

Acknowledgment

The authors thank the Deutsche Forschungsgemeinschaft for financial support (grants no. BR1278/22-1 and BR1278/25-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Brunner.

Appendices

Statement of Responsibility

Nathalie Pytlik and Eike Brunner both did research and wrote this review paper.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pytlik, N., Brunner, E. Diatoms as potential “green” nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications. MRS Communications 8, 322–331 (2018). https://doi.org/10.1557/mrc.2018.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.34

Navigation