Skip to main content
Log in

On the identification of Sb2Se3 using Raman scattering

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Robust evidences are presented showing that the Raman mode around 250 cm−1 in the Sb2Se3 thin films does not belong to this binary compound. The laser power density dependence of the Raman spectrum revealed the formation of Sb2O3 for high values of laser intensity power density excitation under normal atmospheric conditions. To complement this study, the Sb2Se3 films were characterized by x-ray diffraction during in situ annealing. Both these measurements showed that the Sb2Se3 compound can be replaced by Sb2O3. A heat-assisted chemical process explains these findings. Furthermore, Raman conditions required to perform precise measurements are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2

Similar content being viewed by others

References

  1. H.C. Kim, T.S. Oh, and D-B. Hyun: Thermoelectric properties of the p-type Bi2Te3-Sb2Te3-Sb2Se3 alloys fabricated by mechanical alloying and hot pressing. J. Phys. Chem. Solids 61, 743–749 (2000).

    Article  CAS  Google Scholar 

  2. M.-Z. Xue and Z-W. Fu: Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries. J. Alloys Compd. 458, 351–356 (2008).

    Article  CAS  Google Scholar 

  3. J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng: Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J. Phys. Chem. C 113, 13588–13592 (2009).

    Article  CAS  Google Scholar 

  4. W. Luo, A. Calas, C. Tang, F. Li, L. Zhou, and L. Mai: Ultralong Sb2Se3 nanowire-based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl. Mater. Interfaces 8, 35219–35226 (2016).

    Article  CAS  Google Scholar 

  5. L. Wang, D-B. Li, K. Li, C. Chen, H-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, and J. Tang: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017).

    Article  CAS  Google Scholar 

  6. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D-J. Xue, M. Luo, Y. Cao, Y. Cheng, E.H. Sargent, and J. Tang: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415 (2015).

    Article  CAS  Google Scholar 

  7. C. Chen, Y. Zhao, S. Lu, K. Li, Y. Li, B. Yang, W. Chen, L. Wang, D. Li, H. Deng, F. Yi, and J. Tang: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy. Mater. 7, 1700866 (2017).

    Article  Google Scholar 

  8. C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, and J. Tang: 6.5% Certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2, 2125–2132 (2017).

    Article  CAS  Google Scholar 

  9. X. Wen, Y. He, C. Chen, X. Liu, L. Wang, B. Yang, M. Leng, H. Song, K. Zeng, D. Li, K. Li, L. Gao, and J. Tang: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 172, 74–81 (2017).

    Article  CAS  Google Scholar 

  10. A.P. Torane and C.H. Bhosale: Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. J. Phys. Chem. Solids 63, 1849–1855 (2002).

    Article  CAS  Google Scholar 

  11. X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D-J. Xue, L. Lv, H. Huang, D. Niu, and J. Tang: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6, 10687–10695 (2014).

    Article  CAS  Google Scholar 

  12. M. Dimitrievska, G. Gurieva, H. Xie, A. Carrete, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, S. Schorr, and V. Izquierdo-Roca: Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions. J. Alloys Compd. 628, 464–470 (2015).

    Article  CAS  Google Scholar 

  13. C. Insignares-Cuello, F. Oliva, M. Neuschitzer, X. Fontané, C. Broussillou, T. Goislard de Monsabert, E. Saucedo, C.M. Ruiz, A. Pérez-Rodríguez, and V. Izquierdo-Roca: Advanced characterization of electrodeposition-based high efficiency solar cells: non-destructive Raman scattering quantitative assessment of the anion chemical composition in Cu(In,Ga)(S,Se)2 absorbers. Sol. Energy Mater. Sol. Cells 143, 212–217 (2015).

    Article  CAS  Google Scholar 

  14. P. Salomé, P. Fernandes, J. Leitão, M. Sousa, J.P. Teixeira, and A.F. da Cunha: Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence. J. Mater. Sci. 49, 7425–7436 (2014).

    Article  Google Scholar 

  15. Y. Zhang, G. Li, B. Zhang, and L. Zhang: Synthesis and characterization of hollow Sb2Se3 nanospheres. Mater. Lett. 58, 2279–2282 (2004).

    Article  CAS  Google Scholar 

  16. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, and J. Tang: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy. Mater. 4, 1301846 (2014).

    Article  Google Scholar 

  17. K. Nagata, K. Ishibashi, and Y. Miyamoto: Raman and infrared spectra of rhombohedral selenium. Jpn. J. Appl. Phys. 20, 463–469 (1981).

    Article  CAS  Google Scholar 

  18. G. Mestl, P. Ruiz, B. Delmon, and H. Knozinger: Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. J. Phys. Chem. 98, 11276–11282 (1994).

    Article  CAS  Google Scholar 

  19. Z.G. Ivanova, E. Cernoskova, V.S. Vassilev, and S.V. Boycheva: Thermomechanical and structural characterization of GeSe2-Sb2Se3-ZnSe glasses. Mater. Lett. 57, 1025–1028 (2003).

    Article  CAS  Google Scholar 

  20. V.S. Minaev, S.P. Timoshenkov, and V.V. Kalugin: Structural and phase transformations in condensed selenium. J. Optoelectron. Adv. Mater. 7, 1717–1741 (2005).

    CAS  Google Scholar 

  21. X. Wang, K. Kunc, I. Loa, U. Schwarz, and K. Syassen: Effect of pressure on the Raman modes of antimony. Phys. Rev. B 74, 134305 (2006).

    Article  Google Scholar 

  22. Y. Zhao, K.T.E. Chua, C.K. Gan, J. Zhang, B. Peng, Z. Peng, and Q. Xiong: Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 84, 205330 (2011).

    Article  Google Scholar 

  23. C. Platzer-Björkman, P. Zabierowski, J. Pettersson, T. Törndahl, and M. Edoff: Improved fill factor and open circuit voltage by crystalline selenium at the Cu(In,Ga)Se2 /buffer layer interface in thin film solar cells. Prog. Photovoltaics Res. Appl. 18, 249–256 (2010).

    Article  Google Scholar 

  24. A. SeJin, K. Ki Hyun, Y. Jae Ho, and Y. Kyung Hoon: Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles. J. Appl. Phys. 105, 113533 (2009).

    Article  Google Scholar 

  25. Z. Li, X. Chen, H. Zhu, J. Chen, Y. Guo, C. Zhang, W. Zhang, X. Niu, and Y. Mai: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 161, 190–196 (2017).

    Article  CAS  Google Scholar 

  26. W.H. Weber, and R. Merlin: Raman Scattering in Materials Science (Springer, 42, Berlin Heidelberg, 2000).

  27. D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin Heidelberg, 2011). doi: 10.1007/978-3-642-17613-5.

    Book  Google Scholar 

  28. P. Sereni, M. Musso, P. Knoll, P. Blaha, K. Schwarz, and G. Schmidt: Polarization-dependent raman characterization of stibnite (Sb2S3). AIP Conf. Proc. 1267, 1131–1132 (2010).

    Article  Google Scholar 

  29. R. Caracas and X. Gonze: First-principles study of the electronic properties of A2B3 minerals, with A = Bi,Sb and B = S,Se. Phys. Chem. Miner. 32, 295–300 (2005).

    Article  CAS  Google Scholar 

  30. J. Wang, Z. Deng, and Y. Li: Synthesis and characterization of Sb2Se3 nanorods. Mater. Res. Bull. 37, 495–502 (2002).

    Article  CAS  Google Scholar 

  31. I. Efthimiopoulos, J. Zhang, M. Kucway, C. Park, R.C. Ewing, and Y. Wang: Sb2Se3 under pressure. Sci. Rep. 3, 2665 (2013).

    Article  Google Scholar 

  32. International Centre for Diffraction Data—Reference Code, 01-072-1184 (Orthorhombic Pbnm Sb2Se3), 01-072-1334 (cubic Fd-3m Sb2O3), 00-005-0562 (Rhombohedral R-3m Se6).

Download references

Acknowledgments

P. M. P. Salome acknowledges the funding of Fundacao para Ciencia e Tecnologia (FCT) through the project IF/00133/2015. B. Vermang has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 715027). A. Shongalova acknowledges the funding of Erasmus + program 2016/17. This work was funded by FEDER funds through the COMPETE 2020 Program and by FCT–Portuguese Foundation for Science and Technology under the projects UID/CTM/50025/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shongalova, A., Correia, M.R., Vermang, B. et al. On the identification of Sb2Se3 using Raman scattering. MRS Communications 8, 865–870 (2018). https://doi.org/10.1557/mrc.2018.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.94

Navigation