Skip to main content

Advertisement

Log in

Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

This review article evaluates the structure–property relations of inorganic clathrates and clathrate hydrates and their potential role in energy harvesting. There is potential cross-fertilization between the two research areas.

Guest–host clathrate compounds exhibit unique structural and physical properties, which lead to their versatile roles in energy applications. Prominent classes of clathrate compounds are gas hydrates and inorganic clathrates. That said, there is limited cross-fertilization between the clathrate hydrate and inorganic clathrate communities, with researchers in the respective fields being less informed on the other field. Yet the structures and unique guest–host interactions in both these compounds are common important features of these clathrates. Common features and procedures can inspire and inform development between the compound classes, which may be important to the technological advancements for the different clathrate materials, e.g., structure characterization techniques and guest–host dynamics in which the “guest” tends to be imprisoned in the host structure, until external forces are applied. Conversely, the diversity in chemical compositions of these two classes of materials leads to the different applications from methane capture and storage to converting waste heat to electricity (thermoelectrics). This article highlights the structural and physical similarities and differences of inorganic and methane clathrates. The most promising state-ofthe- art applications of the clathrates are highlighted for harvesting energy from methane (clathrate) hydrate deposits under the ocean and for inorganic clathrates as promising thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1.
Figure 1.
Table 2.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Table 3.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  1. Sloan E.D. and Koh C.A.: Clathrate Hydrates of Natural Gases (Taylor and Francis, CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  2. Beekman M. and Nolas G.S.: Inorganic clathrate-II materials of group 14: Synthetic routes and physical properties. J. Mater. Chem. 18, 842–851 (2008).

    CAS  Google Scholar 

  3. Neiner D., Okamoto N.L., Condron C.L., Ramasse Q.M., Yu P., Browning N.D., and Kauzlarich S.M.: Hydrogen encapsulation in a silicon clathrate type I structure: Na5.5 (H2)2.15 Si46: Synthesis and characterization. J. Am. Chem. Soc. 129(45), 13857–13862 (2007).

    CAS  Google Scholar 

  4. Christensen M., Abrahamsen A.B., Christensen N.B., Juranyi F., Andersen N.H., Lefmann K., Andreasson J., Bahl C.R., and Iversen B.B.: Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7(10), 811–815 (2008).

    CAS  Google Scholar 

  5. Krishna L., Baranowski L.L., Martinez A.D., Koh C.A., Taylor P.C., Tamboli A.C., and Toberer E.S.: Efficient route to phase selective synthesis of type II silicon clathrates with low sodium occupancy. CrystEngComm 16(19), 3940–3949 (2014).

    CAS  Google Scholar 

  6. Tritt T.: Advances in Thermoelectric Materials I, Vol. 69 (Academic Press, San Diego, USA, 2000).

  7. Pouchard M. and Cros C.: The early development of inorganic clathrates. In The Physics and Chemistry of Inorganic Clathrates, Nolas G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 1–33.

    Google Scholar 

  8. Rogl P.: Formation of clathrates. In 24th International Conference on Thermoelectrics, 2005. ICT 2005, Vienna, Austria, IEEE: 2005; pp. 440–445. http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D1519981%26userType%3Dinst&denyReason=-134&arnumber=1519981&productsMatched=null&userType=inst.

    Google Scholar 

  9. Shevelkov A.V. and Kovnir K.: Zintl clathrates. In Zintl Phases, Fassler T.S. ed.; Springer: Germany, 2011; pp. 97–142.

    Google Scholar 

  10. Waite W.F., Santamarina J.C., Cortes D.D., Dugan B., Espinoza D., Germaine J., Jang J., Jung J., Kneafsey T.J., and Shin H.: Physical properties of hydrate‐bearing sediments. Rev. Geophys. 47(4), RG4003 (2009).

    Google Scholar 

  11. Nolas G.S.: The Physics and Chemistry of Inorganic Clathrates (Springer, Philadelphia; New York, 2014).

    Google Scholar 

  12. Shin K., Kim Y., Strobel T.A., Prasad P., Sugahara T., Lee H., Sloan E.D., Sum A.K., and Koh C.A.: Tetra-n-butylammonium borohydride semiclathrate: A hybrid material for hydrogen storage. J. Phys. Chem. A 113(23), 6415–6418 (2009).

    CAS  Google Scholar 

  13. Beekman M. and Nolas G.S.: Synthetic approaches to intermetallic clathrates. In The Physics and Chemistry of Inorganic Clathrates, Nolas G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 65–90.

    Google Scholar 

  14. Mao W.L., Mao H-k., Goncharov A.F., Struzhkin V.V., Guo Q., Hu J., Shu J., Hemley R.J., Somayazulu M., and Zhao Y.: Hydrogen clusters in clathrate hydrate. Science 297(5590), 2247–2249 (2002).

    CAS  Google Scholar 

  15. Yamanaka S., Komatsu M., Tanaka M., Sawa H., and Inumaru K.: High pressure synthesis and structural characterization of the type II clathrate compound Na30.5Si136 encapsulating two sodium atoms in the same silicon polyhedral cages. J. Am. Chem. Soc. 136, 7717–7725 (2014).

    CAS  Google Scholar 

  16. Baldwin B.A., Stevens J., Howard J.J., Graue A., Kvamme B., Aspenes E., Ersland G., Husebø J., and Zornes D.R.: Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. Magn. Reson. Imaging 27(5), 720–726 (2009).

    CAS  Google Scholar 

  17. Reny E., Gravereau P., Cros C., and Pouchard M.: Structural Characterization of the NaxSi136 and Na8Si46 silicon clathrates using the Rietveld method. J. Mater. Chem. 8, 2839–2844 (1998).

    CAS  Google Scholar 

  18. Langer T., Dupke S., Trill H., Passerini S., Eckert H., Pöttgen R., and Winter M.: Electrochemical lithiation of silicon clathrate-II. J. Electrochem. Soc. 159(8), A1318–A1322 (2012).

    CAS  Google Scholar 

  19. Wagner N.A., Raghavan R., Zhao R., Wei Q., Peng X., and Chan C.K.: Electrochemical cycling of sodium‐filled silicon clathrate. ChemElectroChem 1(2), 347–353 (2014).

    Google Scholar 

  20. Li D., Fang L., Deng S., Kang K., Shen L., Wei W., and Ruan H.: Structural and electronic properties of type-I and type-VIII Ba8Ga16Sn30 clathrates under compression. Phys. B 407(8), 1238–1243 (2012).

    CAS  Google Scholar 

  21. Davy H.: The Bakerian lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies. Philos. Trans. R. Soc. London 101, 1–35 (1811).

    Google Scholar 

  22. Hammerschmidt E.: Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 26(8), 851–855 (1934).

    CAS  Google Scholar 

  23. Von Stackelberg M.: Feste gashydrate. Naturwissenschaften 36, 327–333 (1949).

    CAS  Google Scholar 

  24. Platteeuw J. and Van der Waals J.: Thermodynamic properties of gas hydrates. Mol. Phys. 1(1), 91–96 (1958).

    CAS  Google Scholar 

  25. Makogon I.U.r.F. and Cieslewicz W.: Hydrates of Natural Gas (PennWell Books, Tulsa, Oklahoma, 1981).

    Google Scholar 

  26. Gudmundsson J., Andersson V., Levik O., and Parlaktuna M.: Hydrate Concept for Capturing Associated Gas. SPE Paper-50598 (Society of Petroleum Engineers, Houston, TX, 1998).

    Google Scholar 

  27. Florusse L.J., Peters C.J., Schoonman J., Hester K.C., Koh C.A., Dec S.F., Marsh K.N., and Sloan E.D.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004).

    CAS  Google Scholar 

  28. Ripmeester J.A., John S.T., Ratcliffe C.I., and Powell B.M.: A new clathrate hydrate structure. Nature 325(6100), 135–136 (1987).

    CAS  Google Scholar 

  29. Collett T.S., Fyre M., Goldberg D., Hasubo J., Koh C.A., Malone M., Shipp C., and Torres M.: Historical Methane Hydrate Projecr Review; Consortium for Ocean Leadership (US Department of Energy, National Energy Technology Laboratory, Washington, DC, 2013).

    Google Scholar 

  30. Kasper J.S., Hagenmuller P., Pouchard M., and Cros C.: Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150(3704), 1713–1714 (1965).

    CAS  Google Scholar 

  31. Menke H. and von Schnering H.G.: Die Käfigverbindungen Ge38A8X8mit A= P, As. Sb und X= Cl, Br. Z. Anorg. Allg. Chem. 395(2–3), 223–238 (1973).

    CAS  Google Scholar 

  32. Kawaji H., Horie H-O., Yamanaka S., and Ishikawa M.: Superconductivity in the silicon clathrate compound (Na, Ba)xSi46. Phys. Rev. Lett. 74(8), 1427 (1995).

    CAS  Google Scholar 

  33. Nolas G.S., Cohn J.L., Slack G.A., and Schujman S.B.: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).

    CAS  Google Scholar 

  34. Gryko J., McMillan P.F., Marzke R.F., Ramachandran G.K., Patton D., Deb S.K., and Sankey O.F.: Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 62(12), R7707 (2000).

    CAS  Google Scholar 

  35. Guloy A.M., Tang Z., Ramlau R., Böhme B., Baitinger M., and Grin Y.: Synthesis of the clathrate‐II K8.6(4)Ge136 by oxidation of K4Ge9 in an ionic liquid. Eur. J. Inorg. Chem. 2009(17), 2455–2458 (2009).

    Google Scholar 

  36. Christensen M., Johnsen S., and Iversen B.B.: Thermoelectric clathrates of type I. Dalton Trans. 39(4), 978–992 (2010).

    CAS  Google Scholar 

  37. Adams G.B., O’Keeffe M., Demkov A.A., Sankey O.F., and Huang Y-M.: Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys. Rev. B 49(12), 8048 (1994).

    CAS  Google Scholar 

  38. Baranowski L.L., Krishna L., Martinez A.D., Raharjo T., Stevanović V., Tamboli A.C., and Toberer E.S.: Synthesis and optical band gaps of alloyed Si–Ge type II clathrates. J. Mater. Chem. C 2(17), 3231–3237 (2014).

    CAS  Google Scholar 

  39. Paull C., Dallimore S.R., Enciso G., Green S., and Koh C.A.: Realizing the Energy Potential of Methane Hydrate for the United States (NRC, Washington, DC, 2010).

    Google Scholar 

  40. Gudmundsson J.S. and Borrehaug A.: Frozen hydrate for transport of natural gas. In 2nd International Conference on Natural Gas Hydrate, Toulouse, France, 2–6 June 1996.

    Google Scholar 

  41. Koh C.A., Sloan E.D., Sum A.K., and Wu D.T.: Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng. 2, 237–257 (2011).

    CAS  Google Scholar 

  42. Eslamimanesh A., Mohammadi A.H., Richon D., Naidoo P., and Ramjugernath D.: Application of gas hydrate formation in separation processes: A review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012).

    CAS  Google Scholar 

  43. Park Y., Kim D-Y., Lee J-W., Huh D-G., Park K-P., Lee J., and Lee H.: Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. U. S. A. 103(34), 12690–12694 (2006).

    CAS  Google Scholar 

  44. Kubota H., Shimizu K., Tanaka Y., and Makita T.: Thermodynamic properties of R13 (CClF3), R23 (CHF3), R152a (C2H4F2), and propane hydrates for desalination of sea water. J. Chem. Eng. Jpn. 17(4), 423–429 (1984).

    CAS  Google Scholar 

  45. Shin K., Cha J-H., Seo Y., and Lee H.: Focus reviews. Chem. - Asian J. 5, 22–34 (2010).

    CAS  Google Scholar 

  46. Stefanoski S., Beekman M., and Nolas G.S.: Inorganic clathrates for thermoelectric applications. In The Physics and Chemistry of Inorganic Clathrates, Nolas G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 169–191.

    Google Scholar 

  47. Martinez A.D., Krishna L., Baranowski L.L., Lusk M.T., Toberer E.S., and Tamboli A.C.: Synthesis of group IV clathrates for photovoltaics. IEEE J. Photovoltaics 3, 1305–1310 (2013).

    Google Scholar 

  48. Yang J. and John S.T.: Silicon clathrates as anode materials for lithium ion batteries? J. Mater. Chem. A 1(26), 7782–7789 (2013).

    CAS  Google Scholar 

  49. Gatti C., Bertini L., Blake N.P., and Iversen B.B.: Guest–framework interaction in type I inorganic clathrates with promising thermoelectric properties: On the ionic versus neutral nature of the alkaline‐earth metal guest a in A8Ga16Ge30 (A= Sr, Ba). Chem. - Eur. J. 9(18), 4556–4568 (2003).

    CAS  Google Scholar 

  50. Tse J.S., Ratcliffe C.I., Powell B.M., Sears V.F., and Handa Y.P.: Rotational and translational motions of trapped methane. Incoherent inelastic neutron scattering of methane hydrate. J. Phys. Chem. A 101(25), 4491–4495 (1997).

    CAS  Google Scholar 

  51. Buch V., Devlin J.P., Monreal I.A., Jagoda-Cwiklik B., Uras-Aytemiz N., and Cwiklik L.C.: Clathrate hydrates with hydrogen-bonding guests. Phys. Chem. Chem. Phys. 11, 10245–10265 (2009). doi: 10.1039/B911600C (Perspective).

    CAS  Google Scholar 

  52. Kumar P. and Sathyamurthy N.: Theoretical studies of host–guest interaction in gas hydrates. J. Phys. Chem. A 115(50), 14276–14281 (2011).

    CAS  Google Scholar 

  53. Khan A.: Ab initio studies of (H2O) 28 hexakaidecahedral cluster with Ne, N2, CH4, and C2H6 guest molecules in the cavity. J. Chem. Phys. 116, 6628–6633 (2002).

    CAS  Google Scholar 

  54. Khan A.: Theoretical studies of CH4 (H2O)(20),(H2O)(21),(H2O)(20), and fused dodecahedral and tetrakaidecahedral structures: How do natural gas hydrates form? J. Chem. Phys. 110(24), 11884–11889 (1999).

    CAS  Google Scholar 

  55. Udachin K.A., Ratcliffe C.I., and Ripmeester J.A.: Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J. Phys. Chem. B 105(19), 4200–4204 (2001).

    CAS  Google Scholar 

  56. Blosser M. and Nolas G.: Synthesis of Na8Si46 and Na24Si136 by oxidation of Na4Si4 from ionic liquid decomposition. Mater. Lett. 99, 161–163 (2013).

    CAS  Google Scholar 

  57. Tse J., Shpakov V., Belosludov V., Trouw F., Handa Y., and Press W.: Coupling of localized guest vibrations with the lattice modes in clathrate hydrates. Europhys. Lett. 54(3), 354 (2001).

    CAS  Google Scholar 

  58. Takabatake T., Suekuni K., Nakayama T., and Kaneshita E.: Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 86(2), 669 (2014).

    CAS  Google Scholar 

  59. Yamanaka S., Enishi E., Fukuoka H., and Yasukawa M.: High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. Inorg. Chem. 39(1), 56–58 (2000).

    CAS  Google Scholar 

  60. Connétable D.: Structural and electronic properties of p-doped silicon clathrates. Phys. Rev. B 75(12), 125202 (2007).

    Google Scholar 

  61. Karttunen A.J. and Fässler T.F.: Semiconducting clathrates meet gas hydrates: Xe24[Sn136]. Chem. - Eur. J. 20(22), 6693–6698 (2014).

    CAS  Google Scholar 

  62. Queisser H.J. and Haller E.E.: Defects in semiconductors: Some fatal, some vital. Science 281(5379), 945–950 (1998).

    CAS  Google Scholar 

  63. Peters B., Zimmermann N.E., Beckham G.T., Tester J.W., and Trout B.L.: Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130(51), 17342–17350 (2008).

    CAS  Google Scholar 

  64. Davidson D. and Ripmeester J.: NMR, NQR and dielectric properties of clathrates. Inclusion Compd. 3, 69–128 (1984).

    CAS  Google Scholar 

  65. Demurov A., Radhakrishnan R., and Trout B.L.: Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 116(2), 702–709 (2002).

    CAS  Google Scholar 

  66. Shi X., Yang J., Bai S., Yang J., Wang H., Chi M., Salvador J.R., Zhang W., Chen L., and Wong-Ng W.: On the design of high‐efficiency thermoelectric clathrates through a systematic cross‐substitution of framework elements. Adv. Funct. Mater. 20(5), 755–763 (2010).

    CAS  Google Scholar 

  67. Krishna L., Martinez A.D., Baranowski L.L., Brawand N.P., Koh C.A., Stevanovic V., Lusk M.T., Toberer E.S., and Tamboli A.C.: Group IV clathrates: Synthesis, optoelectonic properties, and photovoltaic applications. Proc. SPIE 8981, 898108 (2014). doi: 10.1117/12.2040056.

    Google Scholar 

  68. Nistor L., Van Tendeloo G., Amelinckx S., and Cros C.: Atomic imaging of cage‐like structures of silicon. Phys. Status Solidi A 146(1), 119–132 (1994).

    CAS  Google Scholar 

  69. Strobel T.A., Hester K.C., Koh C.A., Sum A.K., and Sloan E.D. Jr.: Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem. Phys. Lett. 478(4), 97–109 (2009).

    CAS  Google Scholar 

  70. Grim R.G., Lafond P., Barnes B., Kockelmann W., Keen D., Soper A.K., Hiratuska M., Yasuoka K., Koh C.A., and Sum A.K.: Observation of interstitial molecular hydrogen in clatharte hydrates. Angew. Chem., Int. Ed. 53, 10710–10713 (2014).

    CAS  Google Scholar 

  71. Koh C.A.: Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31(3), 157–167 (2002).

    CAS  Google Scholar 

  72. Takasu Y., Hasegawa T., Ogita N., Udagawa M., Avila M.A., Suekuni K., and Takabatake T.: Off-center rattling and cage vibration of the carrier-tuned type-I clathrate Ba8Ga16Ge30 studied by Raman scattering. Phys. Rev. B 82(13), 134302 (2010).

    Google Scholar 

  73. He J., Klug D.D., Uehara K., Preston K.F., Ratcliffe C.I., and Tse J.S.: NMR and X-ray spectroscopy of sodium-silicon clathrates. J. Phys. Chem. B 105(17), 3475–3485 (2001).

    CAS  Google Scholar 

  74. Dec S.F., Bowler K.E., Stadterman L.L., Koh C.A., and Sloan E.D.: NMR study of methane+ ethane structure I hydrate decomposition. J. Phys. Chem. A 111(20), 4297–4303 (2007).

    CAS  Google Scholar 

  75. Yahiro H., Yamaji K., Shiotani M., Yamanaka S., and Ishikawa M.: An ESR study on the thermal electron excitation of a sodium atom incorporated in a silicon clathrate compound. Chem. Phys. Lett. 246(1), 167–170 (1995).

    CAS  Google Scholar 

  76. Yang L., Wang Y., Liu T., Hu T., Li B., Ståhl K., Chen S., Li M., Shen P., and Lu G.: Copper position in type-I Ba8Cu4Si42 clathrate. J. Solid State Chem. 178(6), 1773–1777 (2005).

    CAS  Google Scholar 

  77. Ammar A., Cros C., Pouchard M., Jaussaud N., Bassat J-M., Villeneuve G., Duttine M., Ménétrier M., and Reny E.: On the clathrate form of elemental silicon, Si136: Preparation and characterisation of NaxSi136(x→ 0). Solid State Sci. 6(5), 393–400 (2004).

    CAS  Google Scholar 

  78. Falenty A., Hansen T.C., and Kuhs W.F.: Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231–233 (2014).

    CAS  Google Scholar 

  79. Walsh M.R., Koh C.A., Sloan E.D., Sum A.K., and Wu D.T.: Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326(5956), 1095–1098 (2009).

    CAS  Google Scholar 

  80. Snyder G.J. and Toberer E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008).

    CAS  Google Scholar 

  81. LaLonde A.D., Pei Y., Wang H., and Jeffrey Snyder G.: Lead telluride alloy thermoelectrics. Mater. Today 14(11), 526–532 (2011).

    CAS  Google Scholar 

  82. Yang J., Yip H.L., and Jen A.K.Y.: Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3(5), 549–565 (2013).

    CAS  Google Scholar 

  83. Suekuni K., Yamamoto S., Avila M.A., and Takabatake T.: Universal relation between guest free space and lattice thermal conductivity reduction by anharmonic rattling in type-I clathrates. J. Phys. Soc. Jpn. 77(Suppl. A), 61–66 (2008).

    Google Scholar 

  84. Prokofiev A., Sidorenko A., Hradil K., Ikeda M., Svagera R., Waas M., Winkler H., Neumaier K., and Paschen S.: Thermopower enhancement by encapsulating cerium in clathrate cages. Nat. Mater. 12, 1096–1101 (2013).

    CAS  Google Scholar 

  85. Kvenvolden K.A.: Methane hydrates and global climate. Global Biogeochem. Cycles 2, 221–229 (1988).

    CAS  Google Scholar 

  86. Koh C.A., Sum A.K., and Sloan E.D.: Gas hydrates: Unlocking the energy from icy cages. J. Appl. Phys. 106(6), 061101 (2009).

    Google Scholar 

  87. Ruppel C. and Noserale D.: Gas Hydrates and Climate Warming—Why a Methane Catastrophe Is Unlikely. Sound Waves (USGS newsletter), cover story (2012).

    Google Scholar 

Download references

Acknowledgments

CAK would like to thank the NSF REMRSEC (DMR-0820518) center at CSM for facilities support. LK would like to thank the Energy Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by US Department of Energy, Office of science under award number DE-SC0001057 for salary support. Thanks to R. Collins for his helpful feedback on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, L., Koh, C.A. Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting. MRS Energy & Sustainability 2, 8 (2015). https://doi.org/10.1557/mre.2015.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.9

Keywords

Navigation