Skip to main content

Advertisement

Log in

Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes

  • Electrochemical Energy Storage to Power the 21st Century
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ongoing technological advances in such disparate areas as consumer electronics, transportation, and energy generation and distribution are often hindered by the capabilities of current energy storage/conversion systems, thereby driving the search for high-performance power sources that are also economically viable, safe to operate, and have limited environmental impact. Electrochemical capacitors (ECs) are a class of energy-storage devices that fill the gap between the high specific energy of batteries and the high specific power of conventional electrostatic capacitors. The most widely available commercial EC, based on a symmetric configuration of two high-surface-area carbon electrodes and a nonaqueous electrolyte, delivers specific energies of up to ∼6 Whkg–1 with sub-second response times. Specific energy can be enhanced by moving to asymmetric configurations and selecting electrode materials (e.g., transition metal oxides) that store charge via rapid and reversible faradaic reactions. Asymmetric EC designs also circumvent the main limitation of aqueous electrolytes by extending their operating voltage window beyond the thermodynamic 1.2 V limit to operating voltages approaching ∼2 V, resulting in high-performance ECs that will satisfy the challenging power and energy demands of emerging technologies and in a more economically and environmentally friendly form than conventional symmetric ECs and batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. * The symmetric EC design uses two electrodes with the same active materials in the positive and negative electrodes. The asymmetric EC design is related in the present article to the use of two electrodes made of different materials, in which the charge-storage mechanism can be either capacitive, pseudocapacitive, or faradaic.

  2. † “Mild” refers to a near-neutral (5 ≤ pH ≤ 9) aqueous-based solution.

  3. § Packaging can be a polymer or metal casing with different shapes (cylindrical, prismatic). Material and design are chosen according to the solvent used for the electrolyte and the expected volume/weight of the final cell.

  4. ** Thermal runaway describes the situation where overheating a cell results in a further increase in temperature. This uncontrolled increase in temperature can have dramatic consequences, such as melting or vaporization of cell components and cell rupture.

References

  1. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York 1999).

    Google Scholar 

  2. B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991).

    CAS  Google Scholar 

  3. A. Burke, J. Power Sources 91, 37 (2000).

    CAS  Google Scholar 

  4. R.A. Huggins, Solid State Ionics 134, 179 (2000).

    CAS  Google Scholar 

  5. M. Conte, Fuel Cells 10, 806 (2010).

    CAS  Google Scholar 

  6. A. Burke, Int. J. Energy Res. 34, 133 (2010).

    CAS  Google Scholar 

  7. R.A. Rightmire, U.S. Patent 3,288,641 (November 29, 1966).

  8. www.maxwell.com.

  9. www.nesscap.com.

  10. www.tecategroup.com.

  11. E. Frackowiak, F. Béguin, Carbon 39, 937 (2001).

    CAS  Google Scholar 

  12. E. Frackowiak, Phys. Chem. Chem. Phys. 9, 1774 (2007).

    CAS  Google Scholar 

  13. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    CAS  Google Scholar 

  14. P. Simon, A. Burke, ECS Interface 17 (1), 38 (2008).

    CAS  Google Scholar 

  15. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose T.F. Baumann, Energy Environ. Sci. 4, 656 (2011).

    CAS  Google Scholar 

  16. H. Zhang, G.P. Cao, Y.S. Yang, Energy Environ. Sci. 2, 932 (2009).

    CAS  Google Scholar 

  17. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760 (2006).

    CAS  Google Scholar 

  18. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    CAS  Google Scholar 

  19. J. Miller, R.A. Outlaw, B.C. Holloway, Science 329, 1637 (2010).

    CAS  Google Scholar 

  20. N.A. Choudhury, S. Sampath, A.K. Shukla, Energy Environ. Sci. 2, 55 (2009).

    CAS  Google Scholar 

  21. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66, 1 (1997).

    CAS  Google Scholar 

  22. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    CAS  Google Scholar 

  23. X. Zhao, B.M. Sánchez, P.J. Dobson, P.S. Grant, Nanoscale 3, 839 (2011).

    CAS  Google Scholar 

  24. T.C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, J. Electrochem. Soc. 145, 1882 (1998).

    CAS  Google Scholar 

  25. D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006).

    CAS  Google Scholar 

  26. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011).

    CAS  Google Scholar 

  27. J.P. Zheng, P.J. Cyang, T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995).

    CAS  Google Scholar 

  28. W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, J. Phys. Chem. B 106, 12677 (2002).

    CAS  Google Scholar 

  29. R. Fu, Z. Ma, J.P. Zheng, J. Phys. Chem. B 106, 3592 (2002).

    CAS  Google Scholar 

  30. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, J. Phys. Chem. B 109, 7330 (2005).

    CAS  Google Scholar 

  31. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 42, 4092 (2003).

    CAS  Google Scholar 

  32. K. Fukuda, T. Saida, J. Sato, M. Yonezawa, Y. Takasu, W. Sugimoto, Inorg. Chem. 49, 4391 (2010).

    CAS  Google Scholar 

  33. K. Fukuda, H. Kato, W. Sugimoto, Y. Takasu, J. Solid State Chem. 182, 2997 (2009).

    CAS  Google Scholar 

  34. H. Kim, B.N. Popov, J. Power Sources 104, 52 (2002).

    CAS  Google Scholar 

  35. M. Min, K. Machida, J.H. Jang, K. Naoi, J. Electrochem. Soc. 153, A334 (2006).

  36. K. Naoi, S. Ishimoto, N. Ogihara, Y. Nakagawa, S. Hatta, J. Electrochem. Soc. 156 A52 (2009).

  37. C.N. Chervin, A.M. Lubers, J.W. Long, D.R. Rolison, J. Electroanal. Chem. 644, 155 (2010).

    CAS  Google Scholar 

  38. C.B. Arnold, R.C. Wartena, K.E. Swider-Lyons, A. Piqué, J. Electrochem. Soc. 150, A571 (2003).

  39. W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu, J. Electrochem. Soc. 153, A255 (2006).

  40. H.Y. Lee, J.B. Goodenough, J. Solid State Chem. 144, 220 (1999).

    CAS  Google Scholar 

  41. D. Bélanger, T. Brousse, J.W. Long, ECS Interface 17 (1), 49 (2008).

    Google Scholar 

  42. Z.W. Zhang, G.Z. Chen, Energy Mater. 3, 186 (2008).

    CAS  Google Scholar 

  43. W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).

    CAS  Google Scholar 

  44. M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 16, 3184 (2004).

    CAS  Google Scholar 

  45. S.-L. Kuo, N.-L. Wu, J. Electrochem. Soc. 153, A1317 (2006).

  46. H. Kanoh, W. Tang, Y. Makita, K. Ooi, Langmuir 13, 6845 (1997).

    CAS  Google Scholar 

  47. O. Ghodbane, J.-L. Pascal, F. Favier, ACS Appl. Mater. Interfaces 1, 1130 (2009).

    CAS  Google Scholar 

  48. S.-C. Pang, M.A. Anderson, T.W. Chapman, J. Electrochem. Soc. 147, 444 (2000).

    CAS  Google Scholar 

  49. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, J. Electrochem. Soc. 153, A2171 (2006).

  50. H.Y. Lee, S.Y. Kim, H.Y. Lee, Electrochem. Solid-State Lett. 4, A19 (2001).

  51. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, J. Phys. Chem. B 110, 6015 (2006).

    CAS  Google Scholar 

  52. V. Subramanian, H.W. Zhu, B.Q. Wei, Electrochem. Commun. 8, 827 (2006).

    CAS  Google Scholar 

  53. S.B. Ma, K.W. Nam, W.S. Yoon, X.Q. Yang, K.Y. Ahn, K.H. Oh, K.B. Kim, J. Power Sources 178, 43 (2008).

    Google Scholar 

  54. T. Bordjiba, D. Bélanger, J. Electrochem. Soc. 156, A378 (2009).

  55. S. Zhang, C. Peng, K.C. Ng, G.Z. Chen, Electrochim. Acta 55, 7447 (2010).

    CAS  Google Scholar 

  56. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Nano Lett. 7, 281 (2007).

    CAS  Google Scholar 

  57. J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Carbon 48, 3825 (2010).

    CAS  Google Scholar 

  58. Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.L. Wu, S.W. Donne, J. Power Sources 177, 660 (2008).

    CAS  Google Scholar 

  59. F. Ataherian, K.-T. Lee, N.-L. Wu, Electrochim. Acta 55, 7429 (2010).

    CAS  Google Scholar 

  60. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Appl. Phys. A 82, 599 (2006).

    CAS  Google Scholar 

  61. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Béguin, J. Electrochem. Soc. 152, A229 (2005).

  62. S. Razoumov, S. Litvinenko, A. Beliakov, “Asymmetric electrochemical capacitor and method of making,” U.S. Patent 6,222,723 (April 2001).

  63. W.G. Pell, B.E. Conway, J. Power Sources 136, 334 (2004).

    CAS  Google Scholar 

  64. www.esma-cap.com/@lang=English.

  65. www.axionpower.com, see technology section (PbC® technology).

  66. M.S. Hong, S.H. Lee, S.W. Kim, Electrochem. Solid-State Lett. 5, A227 (2002).

  67. T. Brousse, M. Toupin, D. Bélanger, J. Electrochem. Soc. 151, A614 (2004).

  68. V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin, Appl. Phys. A 82, 567 (2006).

    CAS  Google Scholar 

  69. F. Béguin, K. Kierzek, M. Friebe, A. Jankowska, J. Machnikowski, K. Juewicz, E. Frackowiak, Electrochim. Acta 51, 2161 (2006).

    Google Scholar 

  70. X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song, Electrochem. Solid-State Lett. 3, 532 (2000).

    CAS  Google Scholar 

  71. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Carbon 43, 1293 (2005).

    CAS  Google Scholar 

  72. K. Jurewicz, E. Frackowiak, F. Béguin, Appl. Phys. A 78, 981 (2004).

    CAS  Google Scholar 

  73. F. Béguin, M. Friebe, K. Jurewicz, C. Vix-Guterl, J. Dentzer, E. Frackowiak, Carbon 44, 2392 (2006).

    Google Scholar 

  74. D. Qu, J. Power Sources 179, 310 (2008).

    CAS  Google Scholar 

  75. M.J. Bleda-Martínez, J.M. Pérez, A. Linares-Solano, E. Morallón, D. Cazorla-Amorós, Carbon 46, 1053 (2008).

    Google Scholar 

  76. K. Kalinathan, D.P. DesRoches, X.R. Liu, P.G. Pickup, J. Power Sources 181, 182 (2008).

    CAS  Google Scholar 

  77. G. Pognon, T. Brousse, L. Demarconnay, D. Bélanger, J. Power Sources 196, 4117 (2011).

    CAS  Google Scholar 

  78. H.A. Andreas, B.E. Conway, Electrochim. Acta 51, 6510 (2006).

    CAS  Google Scholar 

  79. T. Brousse, D. Bélanger, Electrochem. Solid-State Lett. 6, A244 (2003).

  80. W.-H. Jin, G.T. Cao, J.Y. Sun, J. Power Sources 175, 686 (2008).

    CAS  Google Scholar 

  81. M.B. Sassin, A.N. Mansour, K.A. Pettigrew, D.R. Rolison, J.W. Long, ACS Nano 4, 4505 (2010).

    CAS  Google Scholar 

  82. J. Santos-Peña, O. Crosnier, T. Brousse, Electrochim. Acta 55, 7511 (2010).

    Google Scholar 

  83. K.C. Ng, S. Zhang, C. Peng, G.Z. Chen, J. Electrochem. Soc. 156, A846 (2009).

  84. K.H. Reiman, K.M. Brace, T.J. Gordon-Smith, I. Nandhakumar, G.S. Attard, J.R. Owen, Electrochem. Comm. 8, 517 (2006).

    CAS  Google Scholar 

  85. L. Lu, Y. Zhu, F. Li, W. Zhuang, K.Y. Chan, X. Lu, J. Mater. Chem. 20, 7645 (2010).

    CAS  Google Scholar 

  86. J.-Y. Luo, Y.-Y. Xia, J. Power Sources 186, 224 (2009).

    CAS  Google Scholar 

  87. S. Sarangapani, in Handbook of Solid State Batteries and Capacitors, M.Z.A. Munshi, Ed. (World Scientific, Singapore, 1995), pp. 601.

  88. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010).

    CAS  Google Scholar 

  89. A. Burke, M. Miller, Electrochim. Acta 55, 7538 (2010).

    CAS  Google Scholar 

  90. C. Peng, S. Zhang, X. Zhou, G.Z. Chen, Energy Environ. Sci. 3, 1499 (2010).

    Google Scholar 

  91. L. Demarconnay, E. Raymundo-Piñero, F. Béguin, J. Power Sources 196, 580 (2011).

    CAS  Google Scholar 

  92. A. Burke, M. Miller, J. Power Sources 196, 514 (2011).

    CAS  Google Scholar 

  93. J.P. Zheng, J. Electrochem. Soc. 150, A484 (2003).

  94. Battery Test Manual for Plug-in Hybrid Electric Vehicles, U.S. Department of Energy, Vehicle Technology Program, INL/EXT-07–12536 (March 2008).

  95. P.L. Taberna, P. Simon, J.F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003).

  96. T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, J. Power Sources 173, 633 (2007).

    CAS  Google Scholar 

  97. Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, ACS Nano 4, 5835 (2010).

    CAS  Google Scholar 

  98. Y.-P. Lin, N.-L. Wu, J. Power Sources 196, 851 (2011).

    CAS  Google Scholar 

  99. A. Yuan, X. Wang, Y. Wang, J. Hu, Energy Convers. Manage. 51, 2588 (2010).

    CAS  Google Scholar 

  100. V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources 153, 183 (2006).

    CAS  Google Scholar 

  101. Y.-G. Wang, Y.-Y. Xia, J. Electrochem. Soc. 153, A450 (2006).

  102. Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu, R. Holze, J. Power Sources 195, 2789 (2010).

    CAS  Google Scholar 

  103. A. Malak, K. Fic, G. Lota, C. Vix-Guterl, E. Frackowiak, J. Solid State Electrochem. 14, 811 (2010).

    CAS  Google Scholar 

  104. P. Staiti, F. Lufrano, Electrochim. Acta 55, 7436 (2010).

    CAS  Google Scholar 

  105. Z. Algharaibeh, P.G. Pickup, Electrochem. Commun. 13, 147 (2011).

    CAS  Google Scholar 

  106. Z. Algharaibeh, X. Liu, P.G. Pickup, J. Power Sources 187, 640 (2009).

    CAS  Google Scholar 

  107. V. Khomenko, E. Raymundo-Pinero, F. Béguin, J. Power Sources 195, 4234 (2010).

    CAS  Google Scholar 

  108. N. Yu, L. Gao, Electrochem. Commun. 11, 220 (2009).

    CAS  Google Scholar 

  109. G.M. Suppes, C.G. Cameron, M.S. Freund, J. Electrochem. Soc. 157, A1030 (2010).

  110. J.-W. Lang, L.-B. Kong, M. Liu, Y.-C. Luo, L. Kang, J. Electrochem. Soc. 157, A1341 (2010).

  111. H. Inoue, Y. Namba, E. Higuchi, J. Power Sources 195, 6239 (2010).

    CAS  Google Scholar 

  112. K.-H. Chang, C.-C. Hu, C.-M. Huang, Y.-L. Liu, C.-I Chang, J. Power Sources 196, 2387 (2011).

    CAS  Google Scholar 

  113. T. Brousse, D. Bélanger, Electrochem. Solid-State Lett. 6, A244 (2003).

  114. Y.-P. Lin, N.-L. Wu, J. Power Sources 196, 851 (2011).

    CAS  Google Scholar 

  115. P. Guillemet, Y. Scudeller, T. Brousse, J. Power Sources 157, 630 (2006).

    CAS  Google Scholar 

  116. A.D. Klementov, S.V. Litvinenko, A.V. Stepanov, I.N. Varakin, Proceedings of the 11th Seminar on Double-Layer Capacitors, Deerfield Beach, FL, USA, 3–5 December 2001.

  117. H.A Mosqueda, O. Crosnier, L. Athouël, Y. Dandeville, Y. Scudeller, P.H. Guillemet, D.M. Schleich, T. Brousse, Electrochim. Acta 55, 7479 (2010).

    CAS  Google Scholar 

  118. T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, J. Power Sources 173, 633 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

J. Long and M. Sassin acknowledge the financial support of the U.S. Office of Naval Research. D. Bélanger acknowledges the financial support of the Natural Science and Engineering Research Council of Canada. The Ministère Français des Affaires Etrangères of France and the Ministère des Relations Internationales of Québec are also greatly acknowledged for supporting this work. Part of the work contributed by O. Crosnier and T. Brousse was performed under the framework of the ABHYS French ANR project, whose support is also acknowledged. The authors gratefully acknowledge John R. Miller (JME, Inc.) for helpful discussions regarding the technical content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, J.W., Bélanger, D., Brousse, T. et al. Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bulletin 36, 513–522 (2011). https://doi.org/10.1557/mrs.2011.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.137

Navigation