Skip to main content

Advertisement

Log in

ALD for clean energy conversion, utilization, and storage

  • Progress and future directions for atomic layer deposition and ALD-based chemistry
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) uses self-limiting chemical reactions between gaseous precursors and a solid surface to deposit materials in a layer-by-layer fashion. This process results in a unique combination of attributes, including sub-nm precision, the capability to engineer surfaces and interfaces, and unparalleled conformality over high-aspect ratio and nanoporous structures. Given these capabilities, ALD could play a central role in achieving the technological advances necessary to redirect our economy from fossil-based energy to clean, renewable energy. This article will survey some of the recent work applying ALD to clean energy conversion, utilization, and storage, including research in solid oxide fuel cells, thin-film photovoltaics, lithium-ion batteries, and heterogenous catalysts. Throughout the manuscript, we will emphasize how the unique qualities of ALD can enhance device performance and enable radical new designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. N.S. Lewis, Basic Research Needs for Solar Energy Utilization, Report on the Basic Energy Sciences Workshop on Solar Energy Utilization; U.S. Department of Energy, Office of Science: 2005.

  2. M. Ritala, M. Leskelä, in Atomic Layer Deposition. In Handbook of Thin Film Materials, H.S. Nalwa, Ed. (Academic Press, San Diego, CA, 2001), Vol. 1, p. 103.

  3. S.M. George, Chem. Rev. 110 (1), 111 (2010).

    Google Scholar 

  4. D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers, Chemical Society Reviews 38 (1), 226 (2009).

  5. R. O’Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals (Wiley, New York, NY, 2009).

  6. M. Cassir, A. Ringuede, L. Niinisto, J. Mater. Chem. 20 (41), 8987 (2010).

  7. M. Putkonen, T. Sajavaara, J. Niinisto, L.S. Johansson, L. Niinisto, J. Mater. Chem. 12 (3), 442 (2002).

  8. C. Bernay, A. Ringuede, P. Colomban, D. Lincot, M. Cassir, J. Phys. Chem. Solids 74 (9–10), 1761 (2003).

  9. J.H. Shim, C.C. Chao, H. Huang, F.B. Prinz, Chem. Mater. 19 (15), 3850 (2007).

  10. H. Huang, M. Nakamura, P.C. Su, R. Fasching, Y. Saito, F.B. Prinz, J. Electrochem. Soc. 154 (1), B20 (2007).

  11. H. Huang, J.H. Shim, C.C. Chao, R. Pornprasertsuk, M. Sugawara, T.M. Gur, F.B. Prinz, J. Electrochem. Soc. 156 (3), B392 (2009).

  12. P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, F.B. Prinz, Nano Lett. 8 (8), 2289 (2008).

  13. C.C. Chao, C.M. Hsu, Y. Cui, F.B. Prinz, ACS Nano (2011), doi:10.1021/ nn201354p.

  14. J.S. Park, Y.B. Kim, J.H. Shim, S. Kang, T.M. Gur, F.B. Prinz, Chem. Mater. 22 (18), 5366 (2010).

  15. J.H. Shim, J.S. Park, J. An, T.M. Gur, S. Kang, F.B. Prinz, Chem. Mater. 21 (14), 3290 (2009).

  16. T.P. Holme, C. Lee, F.B. Prinz, Solid State Ionics 179 (27–32), 1540 (2008).

  17. C.C. Chao, Y.B. Kim, F.B. Prinz, Nano Lett. 9 (10), 3626 (2009).

  18. E. Gourba, A. Ringuede, M. Cassir, A. Billard, J. Paiviasaari, J. Niinisto, M. Putkonen, L. Niinisto, Ionics 9 (1–2), 15 (2003).

  19. E. Ballee, A. Ringuede, M. Cassir, M. Putkonen, L. Niinisto, Chem. Mater. 21 (19), 4614 (2009).

  20. Z. Fan, F.B. Prinz, Nano Lett. 11 (6), 2202 (2011).

  21. Z. Fan, C.-C. Chao, F. Hossein-Babaei, F.B. Prinz, J. Mater. Chem. 21, 10903 (2011).

  22. X.R. Jiang, H. Huang, F.B. Prinz, S.F. Bent, Chem. Mater. 20 (12), 3897 (2008).

  23. J.H. Shim, X. Jiang, S.F. Bent, F.B. Prinz, J. Electrochem. Soc. 157 (6), B793 (2010).

  24. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 21 (27), 9938 (2011).

  25. K. Xu, A. von Cresce, J. Mater. Chem. 21 (27), 9849 (2011).

  26. S.T. Myung, Y. Hitoshi, Y.K. Sun, J. Mater. Chem. 21 (27), 9891 (2011).

  27. Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Adv. Mater. 22 (19), 2172 (2010).

  28. L.A. Riley, S. Van Ana, A.S. Cavanagh, Y.F. Yan, S.M. George, P. Liu, A.C. Dillon, S.H. Lee, J. Power Sources 196 (6), 3317 (2011).

  29. T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, H. Fjellvag, J. Mater. Chem. 20 (14), 2877 (2010).

  30. M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, H. Fjellvag, J. Mater. Chem. 19 (46), 8767 (2009).

  31. E.A. Alsema, M.J. De Wild-Scholten, Life-Cycle Analysis Tools for Green Materials and Process Selection 895, 73 (2006).

  32. L. Reijnen, B. Feddes, A.M. Vredenberg, J. Schoonman, A. Goossens, J. Phys. Chem. B 108 (26), 9133 (2004).

  33. M. Gratzel, J. Photochem. Photobiol. C 4, 145 (2003).

  34. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110 (45), 22652 (2006).

  35. T.W. Hamann, A.B.E. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Adv. Mater. 20 (8), 1560 (2008).

  36. T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, J. Phys. Chem. C 112 (27), 10303 (2008).

  37. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7 (8), 2183 (2007).

  38. A.B.F. Martinson, J.W. Elam, J. Liu, M.J. Pellin, T.J. Marks, J.T. Hupp, Nano Lett. 8 (9), 2862 (2008).

  39. W. Shockley, H.J. Queisser, J. Appl. Phys. 32 (3), 510 (1961).

  40. W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, X.Y. Zhu, Science 328 (5985), 1543 (2010).

  41. A.J. Nozik, Chem. Phys. Lett. 457 (1–3), 3 (2008).

  42. J.A. McGuire, J. Joo, J.M. Pietryga, R.D. Schaller, V.I. Klimov, Acc. Chem. Res. 41 (12), 1810 (2008).

  43. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Science 324 (5934), 1542 (2009).

  44. E.H. Sargent, Nat. Photon. 3 (6), 325 (2009).

  45. X. Wang, G.I. Koleila, J. Tang, H. Liu, I.J. Kramer, R. Debnath, L. Brzozowski, D.A.R. Barkhouse, L. Levina, S. Hoogland, E.H. Sargent, Nat. Photon. 5, 480 (2011).

  46. A.K. Dutta, T.T. Ho, L.Q. Zhang, P. Stroeve, Chem. Mater. 12 (4), 1042 (2000).

  47. M. Leskelä, L. Niinisto, P. Niemela, E. Nykanen, P. Soininen, M. Tiitta, J. Vahakangas, Vacuum 41 (4–6), 1457 (1990).

  48. E. Nykanen, J. Laineylijoki, P. Soininen, L. Niinisto, M. Leskelä, L.G. Hubertpfalzgraf, J. Mater. Chem. 4 (9), 1409 (1994).

  49. N.P. Dasgupta, W. Lee, F.B. Prinz, Chem. Mater. 21 (17), 3973 (2009).

  50. N.P. Dasgupta, H.J. Jung, O. Trejo, M.T. McDowell, A. Hryciw, M. Brongersma, R. Sinclair, F.B. Prinz, Nano Lett. 11 (3), 934 (2011).

  51. W. Lee, N.P. Dasgupta, H.J. Jung, J.-R. Lee, R. Sinclair, F.B. Prinz, Nanotechnology 21, 485402 (2010).

  52. A. Pourret, P. Guyot-Sionnest, J.W. Elam, Adv. Mater. 21 (2), 232 (2009).

  53. K. Lambert, J. Dendooven, C. Detavernier, Z. Hens, Chem. Mater. 23 (2), 126 (2011).

  54. D. Ozokwelu, J. Porcelli, P. Akinjiola, Chemical Bandwidth Study; U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, 2006.

  55. H. Feng, J.W. Elam, J.A. Libera, W. Setthapun, P.C. Stair, Chem. Mater. 22 (10), 3133 (2010).

  56. H. Feng, J.L. Lu, P.C. Stair, J.W. Elam, Catalysis Letters 141 (4), 512 (2011).

  57. S.T. Christensen, J.W. Elam, F.A. Rabuffetti, Q. Ma, S.J. Weigand, B. Lee, S. Seifert, P.C. Stair, K.R. Poeppelmeier, M.C. Hersam, M.J. Bedzyk, Small 5 (6), 750 (2009).

  58. S.T. Christensen, J.W. Elam, Chem. Mater. 22 (8), 2517 (2010).

  59. S.T. Christensen, H. Feng, J.L. Libera, N. Guo, J.T. Miller, P.C. Stair, J.W. Elam, Nano Lett. 10 (8), 3047 (2010).

    Google Scholar 

  60. H. Feng, J.W. Elam, J.A. Libera, M.J. Pellin, P.C. Stair, J. Catal. 269 (2), 421 (2010).

    Google Scholar 

Download references

Acknowledgments

F.B.P. and N.P.D. acknowledge support from the Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. J.W.E. acknowledges that the catalysis section of this work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; the battery section was supported as part of the center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; and the photovoltaics section was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Elam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elam, J.W., Dasgupta, N.P. & Prinz, F.B. ALD for clean energy conversion, utilization, and storage. MRS Bulletin 36, 899–906 (2011). https://doi.org/10.1557/mrs.2011.265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.265

Navigation