Skip to main content

Advertisement

Log in

Semiconductor nanowires: A platform for nanoscience and nanotechnology

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. C.M. Lieber, A.M. Morales, P.E. Sheehan, E.W. Wong, P. Yang, Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (Robert A. Welch Foundation, 1997), pp. 165–187.

  2. A.M. Morales, C.M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  3. J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Nature 399, 48 (1999).

    Article  CAS  Google Scholar 

  4. X. Duan, C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

  5. X. Duan, J. Wang, C.M. Lieber, Appl. Phys. Lett. 76, 1116 (2000).

  6. Q. Wei, C.M. Lieber, Mater. Res. Soc. Symp. Proc. 581, 219 (2000).

  7. Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000).

  8. M.S. Gudiksen, C.M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).

  9. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001).

  10. Y. Cui, C.M. Lieber, Science 291, 851 (2001).

  11. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2216 (2001).

  12. M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 105, 4062 (2001).

  13. M.S. Gudiksen, L.J. Lauhon, J. Wang, D. Smith, C.M. Lieber, Nature 415, 617 (2002).

  14. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002).

  15. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002).

  16. Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Nano Lett. 3, 343 (2003).

  17. D. Wang, C.M. Lieber, Nat. Mater. 2, 355 (2003).

  18. C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003).

  19. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004).

  20. D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Nano Lett. 4, 871 (2004).

  21. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 4176 (2004).

  22. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature 430, 61 (2004).

  23. F. Qian, Y. Li, S. Grade č ak, D. Wang, C.J. Barrelet, C.M. Lieber, Nano Lett. 4, 1975 (2004).

  24. G. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890 (2004).

  25. W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 102, 10046 (2005).

  26. P.V. Radovanovic, C.J. Barrelet, S. Grade č ak, F. Qian, C.M. Lieber, Nano Lett. 5, 1407 (2005).

  27. F. Qian, S. Grade č ak, Y. Li, C. Wen, C.M. Lieber, Nano Lett. 5, 2287 (2005).

  28. C. Yang, Z. Zhong, C.M. Lieber, Science 310, 1304 (2005).

  29. Y. Li, J. Xiang, F. Qian, S. Grade č ak, Y. Wu, H. Yan, D.A. Blom, C.M. Lieber, Nano Lett. 6, 1468 (2006).

  30. W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Nano Lett. 8, 3004 (2008).

  31. F. Qian, Y. Li, S. Grade č ak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Nat. Mater. 7, 701 (2008).

  32. P. Xie, Y. Hu, Y. Fang, J. Huang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 106, 15254 (2009).

  33. B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Nat. Nanotechnol. 4, 824 (2009).

  34. X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A., 108 (30), 12212 (2011).

  35. C. Yang, C.J. Barrelet, F. Capasso, C.M. Lieber, Nano Lett. 6, 2929 (2006).

  36. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007).

  37. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Nano Lett. 8, 3456 (2008).

  38. B. Tian, T.J. Kempa, C.M. Lieber, Chem. Soc. Rev. 38, 16 (2009).

  39. Y. Dong, B. Tian, T. Kempa, C.M. Lieber, Nano Lett. 9, 2183 (2009).

  40. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001).

  41. J. Hahm, C.M. Lieber, Nano Lett. 4, 51 (2004).

  42. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).

  43. W.U. Wang, C. Chen, K. Lin, Y. Fang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 102, 3208 (2005).

  44. F. Patolsky, C.M. Lieber, Mater. Today 8, 20 (2005).

  45. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol. 23, 1294 (2005).

  46. F. Patolsky, G. Zheng, C.M. Lieber, Nanomedicine 1, 51 (2006).

  47. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Science 313, 1100 (2006).

  48. F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, MRS Bull. 32, 142 (2007).

  49. B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, C.M. Lieber, Nano Lett. 9, 914 (2009).

  50. T. Cohen-Karni, B.P. Timko, L.E. Weiss, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 106, 7309 (2009).

  51. X.P. Gao, G. Zheng, C.M. Lieber, Nano Lett. 10, 547 (2010).

  52. Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, V.N. Murthy, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 107, 1882 (2010).

  53. T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Nano Lett. 10, 1098 (2010).

  54. B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, C.M. Lieber, IEEE Trans. Nanotechnol. 9, 269 (2010).

  55. G. Zheng, X. Gao, C.M. Lieber, Nano Lett. 10, 3179 (2010).

  56. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Science 329, 831 (2010).

  57. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).

  58. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004).

  59. C.M. Lieber, Solid State Commun. 107, 607 (1998).

  60. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999).

  61. C.M. Lieber, MRS Bull. 28, 486 (2003).

  62. L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Philos. Trans. R. Soc. London, Ser. A 362, 1247 (2004).

  63. X. Duan, C.M. Lieber, in Dekker Encyclopedia of Nanoscience and Nanotechnology, J.A. Schwarz, Ed. (Marcel Dekker, NY 2005).

  64. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9, 18 (2006).

  65. W. Lu, C.M. Lieber, J. Phys. D: Appl. Phys. 39, R387 (2006).

  66. C.M. Lieber, Z.L. Wang, MRS Bull. 32, 99 (2007).

  67. W. Lu, C.M. Lieber, Nat. Mater. 6, 841 (2007).

  68. M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004).

  69. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Goesele, L. Samuelson, Mater. Today 9 (10), 28 (2006).

  70. Z.L. Wang, J. Nanosci. Nanotechnol. 8, 27 (2008).

  71. M.S. Dresselhaus, Annu. Rev. Mater. Sci. 27, 1 (1997).

  72. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002).

  73. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007).

  74. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Nature 441, 489 (2006).

  75. J. Xiang, A. Vidan, M. Tinkham, R.M. Westervelt, C.M. Lieber, Nat. Nanotechnol. 1, 208 (2006).

  76. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, C.M. Lieber, Nano Lett. 7, 3214 (2007).

  77. Y. Hu, H.O.H. Churchill, D.J. Reilly, J. Xiang, C.M. Lieber, C.M. Marcus, Nat. Nanotechnol. 2, 622 (2007).

  78. Y. Dong, G. Yu, M.C. McAlpine, W. Lu, C.M. Lieber, Nano Lett. 8, 386 (2008).

  79. Y. Hu, J. Xiang, G. Liang, H. Yan, C.M. Lieber, Nano Lett. 8, 925 (2008).

    Article  CAS  Google Scholar 

  80. L.V. Chernomordik, M.M. Kozlov, Nat. Struct. Mol. Biol. 15, 675 (2008).

    Article  CAS  Google Scholar 

  81. W.C. Claycomb, N.A. Lanson, B.S. Stallworth, D.B. Egeland, J.B. Delcarpio, A. Bahinski, N.J. Izzo, Proc. Natl. Acad. Sci. U.S.A. 95, 2979 (1998).

  82. D.P. Zipes, J. Jalife, Cardiac Electrophysiology: From Cell to Bedside, 2nd Edition (Saunders, Philadelphia, PA, 2009).

Download references

Acknowledgments

C.M.L would like to express his sincere appreciation to group members who have participated in the studies described in this presentation, as well as collaborators, including Professors Venkatesh Murthy (Harvard), Charles Marcus (Harvard), Hong-Gyu Park (Korea University), Liqiang Mai (Wuhan University of Technology), Dan Kohane (Children’s Hospital), and Robert Langer (MIT). C.M.L. also acknowledges the generous support from the Air Force Office of Scientific Research (AFOSR), Defense Advanced Research Projects Agency (DARPA), Department of Defense National Security Science and Engineering Faculty Fellowship (NSSEFF), McKnight Foundation, MITRE Corporation, and National Institutes of Health Pioneer Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber.

Additional information

This article is based on an edited transcript of the Fred Kavli Distinguished Lectureship in Nanoscience presentation given by Charles M. Lieber (Harvard University) on November 28, 2010 at the Materials Research Society Fall Meeting in Boston. The Kavli Foundation supports scientific research, honors scientific achievement, and promotes public understanding of scientists and their work. Its particular focuses are astrophysics, nanoscience, and neuroscience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieber, C.M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bulletin 36, 1052–1063 (2011). https://doi.org/10.1557/mrs.2011.269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.269

Navigation