Skip to main content
Log in

Metal oxide memories based on thermochemical and valence change mechanisms

  • Resistive switching phenomena in thin films: Materials, devices, and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews recent progress in understanding the resistive switching (RS) behavior and improvements in device performance of RS metal oxide (MO) thin-film systems and devices. The diverse RS MO materials are classified according to their switching mechanisms and characteristics. For each category, some representative materials are selected, and their characteristics are discussed. In addition, other factors such as the device structure, which also plays a crucial role in determining the device properties, are discussed as well. When applied in a real circuit (e.g., in a crossbar structure), there are device features/characteristics that need to be considered, including the bias polarity for switching, the current-voltage relationship, reliability, and scaling issues. Since nonvolatile RS in many MO materials is primarily associated with localized conduction channels, understanding the nature and the dynamic change of the current path structure is crucial and therefore is reviewed at length here. Guidelines for the choice of materials and access devices and their fabrication methods will also be provided. Finally, this review concludes with the outlook and challenges of MO-based resistance change devices for semiconductor memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Eliason, S. Madan, H. McAdams, G. Fox, T. Moise, C. Lin, K. Schwartz, J. Gallia, E. Jabillo, B. Kraus, S. Summerfelt, Proc. IEEE Custom Integrated Circuits Conference 2005 427 (2005).

  2. S. Tehrani, Proc. of IEEE-IEDM 2006 1 (2006).

  3. K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S. Lee, H.-J. Kim, J.-M. Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y. Choi, K.-S. Kim, Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho, C.-H. Choi, W.-R. Chung, D.-E. Kim, Y.-J. Yoon, K.-S. Yu, G.-T. Jeong, H.-S. Jeong, C.-K. Kwak, C.-H. Kim, K. Kim, IEEE J. Solid-State Circuits 43, 150 (2008).

  4. R. Waser, Ed., Nanolectronics and Information Technology (Wiley VCH, NY, 2005).

  5. K. Prall, Proc. EEE-NVSMW 2004 5 (2004).

  6. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009).

  7. C.-U. Pinnow, T. Mikolajick, J. Electrochem. Soc. 151, K13 (2004).

  8. A. Sawa, Mater. Today 11, 28 (2008).

  9. B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963).

  10. D. Jäger, H. Baumann, R. Symanczyk, Phys. Lett. A 117, 141 (1986).

  11. E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors (Cambridge University Press, Cambridge, UK, 2001).

  12. Z. Pan, K. Shum, Appl. Phys. Lett. 76, 505 (2000).

  13. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).

  14. J.H.A. Smits, S.C.J. Meskers, R.A.J. Janssen, A.W. Marsman, D.M. de Leeuw, Adv. Mater. 17, 1169 (2005).

  15. A. Odagawa, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, Phys. Rev. B 70, 224403 (2004).

  16. K.M. Kim, B.J. Choi, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok, J.H. Yoon, S. Han, C.S. Hwang, Nanotechnology 22, 254010 (2011).

  17. D. Adler, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 50, 209 (1978).

  18. I.H. Inoue, S. Yasuda, H. Akinaga, H. Takagi, Phys. Rev. B 77, 035105 (2008).

  19. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

  20. C. Rohde, B.J. Choi, D.S. Jeong, S. Choi, J.-S. Zhao, C.S. Hwang, Appl. Phys. Lett. 86, 262907 (2005).

  21. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006).

  22. D.S. Jeong, H. Schroeder, R. Waser, Appl. Phys. Lett. 89, 082909 (2006).

  23. S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, T.-Y. Tseng, Nanotechnology 21, 495201 (2010).

  24. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008).

  25. D.S. Jeong, H. Schroeder, R. Waser, Electrochem. Solid-State Lett. 10, G51 (2007).

  26. W. Shen, R. Dittmann, R. Waser, J. Appl. Phys. 107, 094506 (2010).

  27. K.M. Kim, D.S. Jeong, C.S. Hwang, Nanotechnology 22, 254002 (2011).

  28. K.M. Kim, G.H. Kim, S.J. Song, J.Y. Seok, M.H. Lee, J.H. Yoon, C.S. Hwang, Nanotechnology 21, 305203 (2010).

  29. M.H. Lee, K.M. Kim, G.H. Kim, J.Y. Seok, S.J. Song, J.H. Yoon, C.S. Hwang, Appl. Phys. Lett. 96, 152909 (2010).

  30. E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S.K. Kim, C.S. Hwang, Phys. Rev. B 73, 193202 (2006).

  31. G. Mattioli, F. Filippone, P. Alippi, A.A. Bonapasta, Phys. Rev. B 78, 241201 (2008).

  32. D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, J. Appl. Phys. 104, 123716 (2008).

  33. J.-F. Marucco, J. Gautron, P. Lemasson, J. Phys. Chem. Solids 42, 363 (1981).

  34. M.H. Lee, K.M. Kim, S.J. Song, S.H. Rha, J.Y. Seok, J.S. Jung, G.H. Kim, J.H. Yoon, C.S. Hwang, Appl. Phys. A 102, 827 (2011).

  35. K.M. Kim, C.S. Hwang, Appl. Phys. Lett. 94, 122109 (2009).

  36. D.-H. Kwon, K.M. Kim, J.H. Jang, J. Jeon, M.H. Lee, G.H. Kim, X. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010).

  37. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros- Ribeiro, R.S. Williams, Adv. Mater. 22, 3573 (2010).

  38. L. Liborio, G. Mallia, N. Harrison, Phys. Rev. B 79, 245133 (2009).

  39. S.H. Chang, J.S. Lee, S.C. Chae, S.B. Lee, C. Liu, B. Kahng, D.-W. Kim, T.W. Noh, Phys. Rev. Lett. 102, 026801 (2009).

  40. D. Ielmini, C. Cagli, F. Nardi, Appl. Phys. Lett. 94, 063511 (2009).

  41. S.J. Song, K.M. Kim, G.H. Kim, M.H. Lee, J.Y. Seok, R. Jung, C.S. Hwang, Appl. Phys. Lett. 96, 112904 (2010).

  42. I. Hwang, M.-J. Lee, G.-H. Buh, J. Bae, J. Choi, J.-S. Kim, S. Hong, Y.S. Kim, I.-S. Byun, S.-W. Lee, S.-E. Ahn, B.S. Kang, S.-O. Kang, B.H. Park, Appl. Phys. Lett. 97, 052106 (2010).

  43. Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, Y. Sugiyama, IEEE Trans. Electron Devices 55, 118 (2008).

  44. H.D. Lee, B. Magyari-Kope, Y. Nishi, Phys. Rev. B 81, 193202 (2010).

  45. C. Yoshida, K. Kinoshita, T. Yamasaki, Y. Sugiyama, Appl. Phys. Lett. 93, 042106 (2008).

  46. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Fanciulli, IEDM Tech. Dig. 775 (2007).

  47. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Devices 56, 193 (2009).

  48. M.H. Lee, C.S. Hwang, Nanoscale 3, 490 (2011).

  49. K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).

  50. S.H. Chang, S.C. Chae, S.B. Lee, C. Liu, T.W. Noh, J.S. Lee, B. Kahng, J.H. Jang, M.Y. Kim, D.-W. Kim, C.U. Jung, Appl. Phys. Lett. 92, 183507 (2008).

  51. B.J. Choi, S. Choi, K.M. Kim, Y.C. Shin, C.S. Hwang, Appl. Phys. Lett. 89, 012906 (2006).

  52. G.H. Kim, J.H. Lee, J.Y. Seok, S.J. Song, J.H. Yoon, K.J. Yoon, M.H. Lee, K.M. Kim, H.D. Lee, S.W. Ryu, T.J. Park, C.S. Hwang, Appl. Phys. Lett. 98, 262901 (2011).

  53. K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Adv. Funct. Mater. 21, 1587 (2011).

  54. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 97, 232102 (2010).

  55. J.J. Yang, J.P. Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 4034 (2010).

  56. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009).

  57. J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, Adv. Mater. 21, 3754 (2009).

  58. S. Na-Phattalung, M.F. Smith, K. Kim, M.-H. Du, S.-H. Wei, S.B. Zhang, S. Limpijumnong, Phys. Rev. B 73, 125205 (2006).

  59. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011).

  60. M. Goldman, K. Pangal, G. Naso, A. Goda, Proc. Int. Memory Workshop (IMW), (2011), pp. 1 – 4.

Download references

Acknowledgments

We would like to thank Dr. Hisashi Shima, Prof. Marcelo J. Rozenberg, Dr. Duncan R. Stewart, Dr. G. Medeiros-Ribeiro, and Dr. R. Stanley Williams for fruitful discussions. Dr. Min Hwan Lee is greatly acknowledged for his help in editing and refining the technical context of this article. C.S.H. acknowledges support from the National Research Program for the Nano Semiconductor Apparatus Development sponsored by the Korean Ministry of Knowledge and Economy, and the Convergent Research Center program (Grant No. 2011K000610) through the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joshua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.J., Inoue, I.H., Mikolajick, T. et al. Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bulletin 37, 131–137 (2012). https://doi.org/10.1557/mrs.2011.356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.356

Navigation