Skip to main content

Advertisement

Log in

Nanoscale impedance and complex properties in energy-related systems

  • Scanning probes for new energy materials: Probing local structure and function
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM)-based impedance spectroscopy provides localized impedance information of materials and interfaces at the nanoscale by utilizing the conductive AFM tip as a moving electrode to detect current response as a function of time and frequency under controlled environments. This capability enables AFM-based nanoscale impedance measurements to play a unique role in enhancing our understanding of many electronic and electrochemical devices. This article introduces the central concepts of AFM-based impedance measurement and reviews recent examples applying this technique to a variety of functional materials systems, in particular focusing on fuel cells, lithium-ion batteries, photoactive biomembranes, as well as other application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R. O’Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals (Wiley, New York, 2006).

    Google Scholar 

  2. G.-A. Nazri, G. Pistoia, Eds., Lithium Batteries: Science and Technology (Springer, New York, 2009).

    Google Scholar 

  3. A. Sawa, Mater. Today 11, 28 (2008).

    Google Scholar 

  4. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008).

    Google Scholar 

  5. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000).

    Google Scholar 

  6. R. He, P. Yang, Nat. Nanotechnol. 1, 42 (2006).

    Google Scholar 

  7. S.S. Nonnenmann, E.M. Gallo, J.E. Spanier, Appl. Phys. Lett. 97, 102904 (2010).

    Google Scholar 

  8. R. O’Hayre, M. Lee, F.B. Prinz, S.V. Kalinin, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S.V. Kalinin, A. Gruverman, Eds. (Springer, New York 2007), vol. 1.

    Google Scholar 

  9. R. Shao, S.V. Kalinin, D.A. Bonnell, Phys. Rev. Lett. 95, 197601 (2003).

    Google Scholar 

  10. R. O’Hayre, M. Lee, F.B. Prinz, J. Appl. Phys. 95, 8382 (2004).

    Google Scholar 

  11. S.V. Kalinin, D.A. Bonnell, Appl. Phys. Lett. 78, 1306 (2001).

    Google Scholar 

  12. R. Shao, D.A. Bonnell, Jpn. J. Appl. Phys. 43, 4471 (2004).

    Google Scholar 

  13. R. O’Hayre, G. Feng, W.D. Nix, F.B. Prinz, J. Appl. Phys. 96, 3540 (2004).

    Google Scholar 

  14. D.A. Bussian, J.R. O’Dea, H. Metiu, S.K. Buratto, Nano Lett. 7, 227 (2007).

    Google Scholar 

  15. E. Aleksandrova, R. Hiesgen, K.A. Friedrich, E. Roduner, Phys. Chem. Chem. Phys. 9, 2735 (2007).

    Google Scholar 

  16. E. Aleksandrova, S. Hink, R. Hiesgen, E. Roduner, J. Phys. Condens. Matter 23, 234109 (2011).

    Google Scholar 

  17. X. Xie, O. Kwon, D.-M. Zhu, T.V. Nguyen, G. Lin, J. Phys. Chem. B 111, 6134 (2007).

    Google Scholar 

  18. Y. Kang, O. Kwon, X. Xie, D.-M. Zhu, J. Phys. Chem. B 113, 15040 (2009).

    Google Scholar 

  19. O. Kwon, Y. Kang, S. Wu, D.-M. Zhu, J. Phys. Chem. B 114, 5365 (2010).

    Google Scholar 

  20. O. Kwon, S. Wu, D.-M. Zhu, J. Phys. Chem. B 114, 14989 (2010).

    Google Scholar 

  21. Q.G. He, A. Kusoglu, I.T. Lucas, K. Clark, A.Z. Weber, R. Kostecki, J. Phys. Chem. B 115, 11650 (2011).

    Google Scholar 

  22. K. Vels Hansen, T. Jacobsen, A.-M. Nørgaard, N. Ohmer, M. Mogensena, Electrochem. Solid-State Lett. 12, B144 (2009).

    Google Scholar 

  23. Y. Wu, K. Vels Hansen, T. Jacobsen, M. Mogensen, Solid State Ionics 197, 32 (2011).

    Google Scholar 

  24. M.W. Louie, A. Hightower, S.M. Haile, ACS Nano 4, 2811 (2010).

    Google Scholar 

  25. W. Lee, M. Lee, Y.-B. Kim, F.B. Prinz, Nanotechnology 20, 445706 (2009).

    Google Scholar 

  26. H. Huang, T.M. Gür, Y. Saito, F. Prinz, Appl. Phys. Lett. 89, 143107 (2006).

    Google Scholar 

  27. J.B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003).

    Google Scholar 

  28. S. Wang, T. Kobayashi, M. Dokiya, T. Hashimoto, J. Electrochem. Soc. 147, 3606 (2000).

    Google Scholar 

  29. F. Vullum, D. Teeters, J. Power Sources 146, 804 (2005).

    Google Scholar 

  30. F. Vullum, D. Teeters, A. Nytén, J. Thomas, Solid State Ionics 177, 2833 (2006).

    Google Scholar 

  31. E. Bayet, F. Huet, M. Keddam, K. Ogle, H. Takenouti, J. Electrochem. Soc. 144, L87 (1997).

    Google Scholar 

  32. A.J. Bhattacharyya, J. Fleig, Y.-G. Guo, J. Maier, Adv. Mater. 17, 2630 (2005).

    Google Scholar 

  33. A. Layson, S. Gadad, D. Teeters, Electrochim. Acta 48, 2207 (2003).

    Google Scholar 

  34. K. Kushida, K. Kuriyama, Appl. Phys. Lett. 84, 3456 (2004).

    Google Scholar 

  35. J. Zhu, J. Feng, L. Lu, K. Zeng, J. Power Sources 197, 224 (2012).

    Google Scholar 

  36. R. Kostecki, F. Kong, Y. Matsuo, F. McLarnon, Electrochim. Acta 45, 225 (1999).

    Google Scholar 

  37. Y. Matsuo, R. Kostecki, F. McLarnon, J. Electrochem. Soc. 148, A687 (2001).

    Google Scholar 

  38. A.L. Lipson, R.S. Ginder, M.C. Hersam, Adv. Mater. 23, 5613 (2011).

    Google Scholar 

  39. K. Kuriyama, A. Onoue, Y. Yuasa, K. Kushida, Surf. Sci. 601, 2256 (2007).

    Google Scholar 

  40. M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull. 18, 461 (1983).

    Google Scholar 

  41. J.J. Davis, D.A. Morgan, C.L. Wrathmell, D.N. Axford, J. Zhao, N. Wang, J. Mater. Chem. 15, 2160 (2005).

    Google Scholar 

  42. K. Kathan-Galipeau, S. Nanayakkara, P.A. O’Brian, M. Nikiforov, B.M. Discher, D.A. Bonnell, ACS Nano 5, 4835 (2011).

    Google Scholar 

  43. L.S.C. Pingree, M.C. Hersam, Appl. Phys. Lett. 87, 233117 (2005).

    Google Scholar 

  44. L. Fumagalli, G. Ferrari, M. Sampietro, G. Gomila, Nano Lett. 9, 1604 (2009).

    Google Scholar 

  45. A. Arutunow, K. Darowicki, A. Zielinski, Electrochim. Acta 56, 2372 (2011).

    Google Scholar 

  46. K. Darowicki, M. Szocinski, A. Zielinski, Electrochim. Acta 55, 3741 (2010).

    Google Scholar 

  47. M. Lee, R. O’Hayre, F.B. Prinz, T.M. Gur, Appl. Phys. Lett. 85, 3552 (2004).

    Google Scholar 

  48. W. Lee, F.B. Prinz, J. Electrochem. Soc. 156, G125 (2009).

    Google Scholar 

  49. W. Lee, N.P. Dasgupta, O. Trejo, J.-R. Lee, J. Hwang, T. Usui, F.B. Prinz, Langmuir 26, 6845 (2010).

    Google Scholar 

  50. J. Kruempelmann, M. Balabajew, M. Gellert, B. Roling, Solid State Ionics 198, 16 (2011).

    Google Scholar 

  51. R. Shao, S.V. Kalinin, D.A. Bonnell, Appl. Phys. Lett. 82, 1869 (2003).

    Google Scholar 

  52. S.V. Kalinin, D.A. Bonnell, Nano Lett. 4, 555 (2004).

    Google Scholar 

  53. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B 70, 235304 (2004).

    Google Scholar 

  54. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006).

    Google Scholar 

  55. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

    Google Scholar 

  56. D. Lee, D.-J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, H. Hwang, Appl. Phys. Lett. 90, 122104 (2007).

    Google Scholar 

  57. M.H. Lee, C.S. Hwang, Nanoscale 3, 490 (2011).

    Google Scholar 

  58. K. Darowicki, A. Zielinski, Electrochim. Acta 55, 7761 (2010).

    Google Scholar 

  59. S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A.P. Baddorf, Y. Lilach, M. Moskovits, A. Kolmakov, J. Appl. Phys. 98, 044503 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Prinz, F.B., Chen, X. et al. Nanoscale impedance and complex properties in energy-related systems. MRS Bulletin 37, 659–667 (2012). https://doi.org/10.1557/mrs.2012.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.145

Navigation