Skip to main content
Log in

Low thermal conductivity oxides

  • Thermal-barrier coatings for more efficient gas-turbine engines
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/ chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R. Siegel, C.M. Spuckler, Mater. Sci. Eng., A 245, 150 (1998).

    Article  Google Scholar 

  2. S. Stecura, “Optimization of the NiCrAI-Y/ZrO2-Y2O3 Thermal Barrier System” (NASA Tech. memo, Cleveland, 1985).

  3. J. Callaway, H.C. von Baeyer, Phys. Rev. 120 (4), 1149 (1960).

  4. P.K. Schelling, S.R. Phillpot, J. Am. Ceram. Soc. 84 (12), 2997 (2001).

  5. T. Watanabe, S.G. Srivilliputhur, P.K. Schelling, J.S. Tulenko, S.B. Sinnott, S.R. Phillpot, J. Am. Ceram. Soc. 92 (4), 850 (2009).

  6. P.B. Allen, J.L. Feldman, S.R. Bickham, Philos. Mag. B 79 (11–12), 1715 (1999).

  7. V. Lughi, D.R. Clarke, Surf. Coat. Technol. 200 (5–6), 1287 (2005).

  8. J. Feng, X.R. Ren, X. Wang, R. Zhou, W. Pan, Scripta Mater. 66 (1), 41 (2012).

  9. M.N. Rahaman, J.R. Gross, R.E. Dutton, H. Wang, Acta Mater. 54 (6), 1615 (2006).

  10. C.G. Levi, Curr. Opin. Solid State Mater. Sci. 8 (1), 77 (2004).

  11. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, R. Vaβen, D. Stöver, M.J. Mayo, J. Am. Ceram. Soc. 87 (3), 431 (2004).

  12. S. Raghavan, H. Wang, W.D. Porter, R.B. Dinwiddie, M.J. Mayo, Acta Mater. 49 (1), 169 (2001).

  13. Y. Shen, R.M. Leckie, C.G. Levi, D.R. Clarke, Acta Mater. 58 (13), 4424 (2010).

  14. X.W. Song, M. Xie, R. Mu, F. Zhou, G. Jia, S. An, Acta Mater. 59 (10), 3895 (2011).

  15. M.O. Jarligo, D.E. Mack, G. Mauer, R. Vaβen, D. Stöver, J. Therm. Spray Technol. 19 (1–2), 303 (2010).

  16. R. Vaβen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Surf. Coat. Technol. 205 (4), 938 (2010).

  17. D.M. Zhu, R.A. Miller, Int. J. Appl. Ceram. Technol. 1 (1), 86 (2004).

  18. R. Vaβen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram. Soc. 83 (8), 2023 (2000).

  19. B.J. Wuensch, K.W. Eberman, J. Miner. 52, 19 (2000).

  20. P.K. Schelling, S.R. Phillpot, R.W. Grimes, Philos. Mag. Lett. 84 (2), 127 (2004).

  21. Z. Qu, C. Wan, W. Pan, Acta Mater. 60 (6–7), 2939 (2012).

  22. J. Wu, X.Z. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, M.I. Osendi, J. Am. Ceram. Soc. 85 (12), 3031 (2002).

  23. M.R. Winter, D.R. Clarke, J. Am. Ceram. Soc. 90 (2), 533 (2007).

  24. Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, T. Torigoe, J. Am. Ceram. Soc. 89 (1), 340 (2006).

  25. H. Lehmann, D. Pitzer, G. Pracht, R. Vaβen, D. Stöver, J. Am. Ceram. Soc. 86 (8), 1338 (2003).

  26. C.L. Wan, Z.X. Qu, A. Du, W. Pan, J. Am. Ceram. Soc. 94 (2), 592 (2011).

  27. C.L. Wan, W. Zhang, Y. Wang, Z.X. Qu, A. Du, R. Wu, W. Pan, Acta Mater. 58 (18), 6166 (2010).

  28. R.H. Mitchell, Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, 2002).

  29. W. Ma, D.E. Mack, R. Vaβen, D. Stöver, J. Am. Ceram. Soc. 91 (8), 2630 (2008).

  30. W. Ma, M.O. Jarligo, D. Pitzer, J. Malzbender, R. Vaβen, D. Stöver, J. Therm. Spray Technol. 17 (5–6), 831 (2008).

  31. M.O. Jarligo, D.E. Mack, R. Vapen, D. Stöver, J. Therm. Spray Technol. 18 (2), 187 (2009).

  32. C. Wan, Z. Qu, Y. He, D. Luan, W. Pan, Phys. Rev. Lett. 101 (8), 085901 (2008).

  33. C.L. Wan, T.D. Sparks, W. Pan, D.R. Clarke, R. David, J. Am. Ceram. Soc. 93 (5), 1457 (2010).

  34. A. Chernatynskiy, R.W. Grimes, M.A. Zurbuchen, D.R. Clarke, S.R. Phillpot, Appl. Phys. Lett. 95 (16) (2009).

  35. Y. Shen, D.R. Clarke, P.A. Fuierer, Appl. Phys. Lett. 93 (10) (2008).

  36. H. Guo, H. Zhang, G. Ma, S. Gong, Surf. Coat. Technol. 204 (5), 691 (2009).

  37. X.Q. Cao, R. Vapen, D. Stöver, J. Eur. Ceram. Soc. 24 (1), 1 (2004).

  38. A.B. Du, C.L. Wan, Z. Qu, W. Pan, J. Am. Ceram. Soc. 92 (11), 2687 (2009).

  39. A.B. Du, C.L. Wan, Z. Qu, R. Wu, W. Pan, J. Am. Ceram. Soc. 93 (9), 2822 (2010).

  40. Z.X. Qu, T.D. Sparks, W. Pan, D.R. Clarke, Acta Mater. 59 (10), 3841 (2011).

  41. R. Vapen, G. Kerkhof, D. Stöver, Mater. Sci. Eng., A 303 (1–2), 100 (2001)

  42. S. Sodeoka, M. Suzuki, K. Ueno. H. Sakuramoto, T. Shibata, M. Ando, J. Therm. Spray Technol. 6 (3), 361 (1997).

  43. X.Q. Cao, R. Vapen, W. Fischer, F. Tietz, W. Jungen, D. Stöve, Adv. Mater. 15 (17), 1438 (2003).

  44. Z.X. Qu, C.L. Wan, W. Pan, Chem. Mater. 19 (20), 4913 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described has been supported, in part, by several agencies. The work of W.P., C.W., and Z.Q. was supported by the National Natural Science Foundation of China (Grant No. 51072088, 50990302) as well as through the US National Science Foundation through a World Materials Network grant. SRP and AC are subcontractors of the US Government under DOE Contract No. DE-AC07–05ID14517, under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science, FWP 1356). The US Government retains a worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Phillpot, S.R., Wan, C. et al. Low thermal conductivity oxides. MRS Bulletin 37, 917–922 (2012). https://doi.org/10.1557/mrs.2012.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.234

Navigation