Skip to main content

Advertisement

Log in

Thin-film piezoelectric MEMS

  • Thin-film piezoelectric MEMS
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Major challenges have emerged as microelectromechanical systems (MEMS) move to smaller size and increased integration density, while requiring fast response and large motions. Continued scaling to nanoelectromechanical systems (NEMS) requires revolutionary advances in actuators, sensors, and transducers. MEMS and NEMS utilizing piezoelectric thin films provide the required large linear forces with fast actuation at small drive voltages. This, in turn, provides accurate displacements at high integration densities, reduces the voltage burden on the integrated control electronics, and decreases NEMS complexity. These advances are enabled by the rapidly growing field of thin-film piezoelectric MEMS, from the development of AlN films for resonator and filter applications, to their implementation in adaptive radio front ends, to the demonstration of large piezoelectricity in epitaxial Pb(Zr,Ti)O3 and PbMg1/3 Nb2/3 O3–PbTiO3 thin films. Applications of low voltage MEMS/NEMS include transducers for ultrasound medical imaging, robotic insects, inkjet printing, mechanically based logic, and energy harvesting. As described in this article, advances in the field are being driven by and are prompting advances in heterostructure design and theoretical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Google Scholar 

  2. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005).

  3. K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).

  4. Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany, Appl. Phys. Lett. 78, 162 (2001).

  5. A.B. Hutchinson, P.A. Truitt, K.C. Schwab, L. Sekaric, J.M. Parpia, H.G. Craighead, J.E. Butler, Appl. Phys. Lett. 84, 972 (2004).

  6. D. Lopez, M.E. Simon, F. Pardo, V. Aksyuk, F. Klemens, R. Cirelli, D.T. Neilson, H. Shea, T. Sorsch, E. Ferry, O. Nalamasu, P.L. Gammel, 2002 IEEE/LEOS International Conference on Optical MEMS (2002), p. 211.

  7. V.A. Aksyuk, M.E. Simon, F. Pardo, S. Arney, D. Lopez, A. Villanueva, Solid-State Sensor and Actuator Workshop (Hilton Head Island, SC, 2002), pp. 1–6.

  8. D.M. Marom, D.T. Neilson, D.S. Greywall, C.S. Pai, N.R. Basavanhally, V. Aksyuk, D. Lopez, F. Pardo, M.E. Simon, Y. Low, P. Kolodner, C.A. Bolle, IEEE J. Lightwave Technol. 23 (1), 1620 (2005).

  9. V.A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H.B. Chan, M.E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D.T. Neilson, J. Kim, C.R. Giles, D. Bishop, J. Lightwave Technol. 21 (3), 634 (2003).

  10. S. Trolier-McKinstry, P. Muralt, J. Electroceram. 12 (1–2), 7 (2004).

  11. D. Damjanovic, Appl. Phys. Lett. 97 (6), 062906 (2010).

  12. V. Cimallam, J. Pezoldt, O. Armbacher, J. Phys. D: Appl. Phys. 40 (20), 6386 (2007).

  13. K.M. Lakin, G.R. Kline, K.T. McCarron, IEEE Trans. Microwave Theory Tech. 41 (12), 2139 (1993).

  14. R. Ruby, P. Bradley, J.D. Larson, Y. Oshmyansky, Electron. Lett. 35 (10), 794 (1999).

  15. S. Roundy, P.K. Wright, J. Rabaey, Comp. Commun. 26 (11), 1131 (2003).

  16. A. Erturk, D.L. Inman, Piezoelectric Energy Harvesting (Wiley, New York, 2011).

  17. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17 (4), 043001 (2008).

  18. N.E. DuToit, B.L. Wardle, AIAA J. 45 (5), 1126 (2007).

  19. J.S. Yun, S.N. Patel, M.S. Reynolds, G.D. Abowd, IEEE Trans. Mob. Comput. 10, 669 (2011).

  20. L. Moro, D. Benasciutti, Smart Mater. Struct. 19, 115011 (2010).

  21. T. von Buren, P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, G. Troster, IEEE Sens. J. 6, 28 (2006).

  22. M.A. Karami, D.J. Inman, Appl. Phys. Lett. 100 (4), 042901 (2012).

  23. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Science 304 (5677), 1650 (2004).

  24. D.L. Polla, L.F. Francis, Annu. Rev. Mater. Sci. 28, 563 (1998).

  25. P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, MRS Bull. 34 ( 9), 658 ( 2009).

  26. S. Trolier-McKinstry, F. Griggio, C. Yaeger, P. Jousse, D. Zhao, S.S.N. Bharadwaja, T.N. Jackson, S. Jesse, S.V. Kalinin, K. Wasa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (9), 1782 (2011).

  27. S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, M.A.H. Safaa, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, K. Persson, Mater. Sci. Eng. Rep. 56 (1–6), 1 (2007).

  28. G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R. Polcawich, J. Am. Ceram. Soc. 95 (6), 1777 (2012).

  29. S.J. Gross, S. Tadigadapa, T.N. Jackson, S. Trolier-McKinstry, Q.Q. Zhang Appl. Phys. Lett. 83, 174 (2003).

  30. A.N. Cleland, M. Pophristic, I. Ferguson, Appl. Phys. Lett. 79, 2070 (2001).

  31. E. Fujii, R. Takayama, K. Nomura, A. Murata, T. Hirasawa, A. Tomozawa, S. Fujii, T. Kamada, T.H. Torii, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (12), 2431 (2007).

  32. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989).

  33. O. Auciello, J.F. Scott, R. Ramesh, Phys. Ferroelectr. Memories 51, 22 (1998).

  34. R.E. Newnham, MRS Bull. 22 (5), 20 (1995).

  35. X.L. Zhang, Z.X. Chen, L.E. Cross, W.A. Schulze, J. Mater. Sci. 18 (4), 968 (1983).

  36. H.X. Fu, R.E. Cohen, Nature 403 (6767), 281 (2000).

  37. D. Damjanovic, Appl. Phys. Lett. 97 (6), 062906 (2010).

  38. A. Pramanick, D. Damjanovic, J. Daniels, J.C. Nino, J.L. Jones, J. Am. Ceram. Soc. 94 (2), 293 (2011).

  39. B. Xu, Y. Ye, L.E. Cross, J.J. Bernstein, R. Miller, Appl. Phys. Lett. 74, 3549 (1999).

  40. E.K. Hong, S. Trolier-McKinstry, R.L. Smith, S.V. Krishnaswamy, C.B. Freidhoff, J. Microelectromech. Syst. 15, (4), 832 (2006).

  41. S.B. Desu, D.P. Vijay, X. Zhang, B.P. He, Appl. Phys. Lett. 69, 1719 (1996).

  42. S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, A.I. Kingon, J. Appl. Phys. 86, 4565 (1999).

  43. C.B. Eom, R.B. van Dover, J.M. Phillips, D.J. Werder, J.H. Marshall, C.H. Chen, R.J. Cava, R.M. Fleming, D.K. Fork, Appl. Phys. Lett. 63, 2570 (1993).

  44. T. Tybell, C.H. Ahn, J.M. Triscone, Appl. Phys. Lett. 75, 856 (1999).

  45. P. Muralt, J. Am. Ceram. Soc. 91, 1385 (2008); doi: 10.1111/j.1551-2916. 2008.02421.x.

  46. H. Lu, X. Liu, D.J. Kim, A. Stamm, J.D. Burton, P. Lukashev, C.W. Bark, D.A. Felker, C.M. Folkman, X. Pan, M.S. Rzchowski, C.-B. Eom, E.Y. Tsymbal, A. Gruverman, Adv. Mater. 24, 1209 (2012).

  47. M.K. Lee, C.B. Eom, W. Tian, X.Q. Pan, M.C. Smoak, F. Tsui, J.J. Krajewski, Appl. Phys. Lett. 77, 364 (2000).

  48. J.M. Triscone, O. Fischer, O. Brunner, L. Antognazza, A.D. Kent, M.G. Karkut Phys. Rev. Lett. 64, 804 (1990).

  49. J.C. Jiang, X.Q. Pan, W. Tian, C.D. Theis, D.G. Schlom, Appl. Phys. Lett. 74, 2851 (1999).

  50. M. Dekkers, M.D. Nguyen, R. Steenwelle, P.M. te Riele, D.H.A. Blank, G. Rijnders Appl. Phys. Lett. 95, 012902 (2009).

  51. T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000).

  52. Y.L. Li, S. Choudhury, Z.K. Liu, L.Q. Chen, Appl. Phys. Lett. 83, 1608 (2003).

  53. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, C.B. Eom, Science 306, 1005 (2004).

  54. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004).

  55. D.G. Schlom, L.Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.M. Triscone, Annu. Rev. Mater. Res. 237, 589 (2007).

  56. J.X. Zhang, B. Xiang, Q. He, J. Seidel, R.J. Zeches, P. Yu, S.Y. Yang, C.H. Wang, Y.-H. Chu, L.W. Martin, A.M. Minor, R. Ramesh, Nat. Nanotechnol. 6, 98 (2011).

  57. A.K. Sharma, J. Narayan, C. Jin, A. Kvit, S. Chattopadhyay, C. Lee, Appl. Phys. Lett. 76, 1458 (2000).

  58. R.A. McKee, F.J. Walker, M.F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).

  59. J. Lettieri, Critical Issues of Complex, Epitaxial Oxide Growth and Integration with Silicon by Molecular Beam Epitaxy ( Pennsylvania State University, University Park, 2002); http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-202/index.html.

  60. J.W. Reiner, A.M. Kolpak, Y. Segal, K.F. Garrity, S. Ismail-Beigi, C.H. Ahn, F.J. Walker, Adv. Mater. 22, 2919 (2010).

  61. R. Ramesh, A. Inam, W.K. Chan, B. Wilkens, K. Myers, K. Remschning, D.L. Hart, J.M. Tarascon, Science 252, 944 (1991).

  62. C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. van Dover, J.H. Marshall, J.W.P. Hsu, J.J. Krajewski, W.F. Peck Jr., Science 258, 1766 (1992).

  63. D.S. Paik, S.E. Park, S. Wda, S.F. Liu, T.R. Shrout, J. Appl. Phys. 85, 1080 (1999).

  64. C.B. Eom, J.Z. Sun, K. Yamamoto, A.F. Marshall, K.E. Luther, T.H. Geballe, S.S. Laderman, Appl. Phys. Lett. 55, 595 (1989).

  65. S.H. Baek, J. Park, D.M. Kim, V. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958 (2011).

  66. S.A. Bhave, R.T. Howe, Proc. 13th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (2005), p. 2139.

  67. E.-H. Yang, Y. Hishinuma, J.-G. Cheng, S. Trolier-McKinstry, E. Bloemhof, B.M. Levine, J. Microelectromech. Syst. 15 (5), 1214 (2006).

  68. J.L. Fanson, MRS Proc. 360, 109 (1995).

  69. C.L. Him, P.D. Dean, S.R. Winzer, Proc. SPIE 3985, 394 (2000).

  70. R.A. Windhorst, R.A. Cameron, R.J. Brissenden, M.S. Elvis, G. Fabbiano, P. Gorenstein, P.B. Reid, D.A. Schwartz, M.W. Bautz, E. Figueroa-Feliciano, R. Petre, N.E. White, W.W. Zhang, New Astron. Rev. 50, 121 (2006).

  71. V. Cotroneo, W.M. Davis, P.B. Reid, D.A. Schwartz, S. Trolier-McKinstry, R.H.T. Wilke, Proc. SPIE 8147, 81471R (2011).

  72. A. Hajati, S.G. Kim, Appl. Phys. Lett. 99, 083105 (2011).

  73. C.J. Zuo, N. Sinha, G. Piazza, Sens. Act. A. 160 (1–2), 132 (2010).

  74. S. Zlotan, US Patent 3965376 (June 22, 1976).

  75. http://global.epson.com/innovation/printing_technology/micro_piezo_technology/future.

  76. M.L. Roukes, Phys. World 14, 25 (2001).

  77. H.G. Craighead, Science 290, 1532 (2000).

  78. C.T.-C. Nguyen, IEEE Trans. Microwave Theory Tech. 47, 1486 (1999).

  79. R.H. Blick, A. Erbe, L. Pescini, A. Kraus, D.V. Scheible, F.W. Beil, E.M. Höhberger, A. Hoerner, J. Kirschbaum, H. Lorenz, J.P. Kotthaus, J. Phys. Condens. Matter 14, R905 (2002).

  80. A.N. Cleland, Foundations of Nanomechanics—From Solid-State Theory to Device Applications (Springer-Verlag, Berlin, 2003).

  81. K. Akarvardar, D. Elata, R. Parsa, G.C. Wan, K. Yoo, J. Provine, P. Peurnans, R.T. Howe, H.S.P. Wong, IEEE IEDM (2007), p. 299.

  82. L. Bellaiche, D. Vanderbilt, Phys. Rev. Lett. 83, 1347 (1999).

  83. G. Saghi-Szabo, R.E. Cohen, H. Krakauer, Phys. Rev. Lett. 80, 4321 (1998).

  84. O.Y. Jun, R. Ramesh, A.L. Roytburd, Appl. Surf. Sci. 252, 3394 (2006).

  85. Y. Cao, G. Sheng, J.X. Zhang, S. Choudhury, Y.L. Li, C.A. Randall, L.Q. Chen, Appl. Phys. Lett. 97, 252904 (2010).

  86. L.Q. Chen, J. Am. Ceram. Soc. 91, 1835 (2008).

  87. H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).

    Google Scholar 

Download references

Acknowledgements

Chang-Beom Eom gratefully acknowledges support from the National Science Foundation (grant no. ECCS-0708759) and the David & Lucile Packard Fellowship. Susan Trolier-McKinstry gratefully acknowledges support from a National Security Science and Engineering Faculty Fellowship, as well as the National Science Foundation for a Nanoscience Engineering Research Center program (EEC-1160483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Beom Eom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eom, C.B., Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bulletin 37, 1007–1017 (2012). https://doi.org/10.1557/mrs.2012.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.273

Navigation