Skip to main content

Advertisement

Log in

Electrochemical metallization cells—blending nanoionics into nanoelectronics?

  • Resistive switching phenomena in thin films: Materials, devices, and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A range of material systems exist in which nanoscale ionic transport and redox reactions provide the essential mechanisms for memristive switching. One class relies on mobile cations, which are easily created by electrochemical oxidation of the corresponding electrode metal, transported in the insulating layer, and reduced at the inert counterelectrode. These devices are termed electrochemical metallization (ECM) memories, also called conductive bridge random access memories. The memristive characteristics of the ECM cells provide opportunities for circuit design and computational concepts that go beyond those in traditional complementary metal oxide semiconductor (CMOS) technology. Passive memory arrays open up paths toward ultradense and 3D stackable memory and logic gate arrays. Furthermore, the multivalued conductance characteristics allow for potential exploitation of the cells as synapses in neuromorphic circuits in future energy efficient high-performance computer architectures. Despite exciting results obtained in recent years, many challenges have to be met before these physical effects can be turned into competitive industrial technology. Here, we briefly review the basic working principle, the different possible and potential material combinations, and the fundamental electrochemical processes in ECM cells and their implications for device operations. The prospects of ECM-based resistive random access memory as an emerging memory technology are also reviewed in terms of switching speed and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (ITRS), 2010 Edition; www.itrs.net/Links/2010ITRS/Home2010.htm.

  2. A. Chung, J. Deen, J.S. Lee, M. Meyyappan, Nanotechnology 21, 412001 (2010).

    Article  Google Scholar 

  3. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, IBM J. Res. Dev. 52, 449 (2008).

  4. Y. Hirose, H. Hirose, J. Appl. Phys. 47, 2767 (1976).

  5. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009).

  6. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007).

  7. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).

  8. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008).

  9. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Nanotechnology 22, 254003 (2011).

  10. C. Schindler, G. Staikov, R. Waser, Appl. Phys. Lett. 94, 072109 (2009).

  11. R. Bruchhaus, M. Honal, R. Symanczyk, M. Kund, J. Electrochem. Soc. 156, H729 (2009).

  12. R. Symanczyk, R. Bruchhaus, R. Dittrich, M. Kund, IEEE Electron Device Lett. 30, 876 (2009).

  13. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009).

  14. D. Kamalanathan, U. Russo, D. Ielmini, M.N. Kozicki, IEEE Electron Device Lett. 30, 553 (2009).

  15. M.N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, M. Mitkova, 2005 Proc. Non-Volatile Memory Tech. Symp. 83 (2005).

  16. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, 2004 Proc. Non-Volatile Memory Tech. Symp. 10 (2004).

  17. M. Balakrishnan, M.N. Kozicki, C. Gopalan, M. Mitkova, Device Research Conf. Digest 47 (2005).

  18. D. Kamalanathan, S. Baliga, S.C.P. Thermadam, M. Kozicki, Proc. Non- Volatile Memory Tech. Symp. 90 (2007).

  19. C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blanchard, S. Hollmer, Solid-State Electron. 58, 54 (2011).

  20. M.N. Kozicki, M. Mitkova, J. Non-Cryst. Solids 352, 567 (2006).

  21. N.E. Gilbert, M.N. Kozicki, IEEE J. Solid-State Circuits 42, 1383 (2007).

  22. R. Symanczyk, M. Balakrishnan, C. Gopalan, T. Happ, M.N. Kozicki, M. Kund, T. Mikolajick, M. Mitkova, M. Park, C.-U. Pinnow, J. Robertson, K.-D. Ufert, Proc. Non-Volatile Memory Tech. Symp. 17 (2003).

  23. M. Kund, G. Beitel, C.U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K.D. Ufert, G. Muller, IEDM Tech. Dig. 2005, 773 (2005).

  24. C. Schindler, M. Meier, R. Waser, M.N. Kozicki, Proc. Non-Volatile Memory Tech. Symp. 81 (2007).

  25. M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005).

  26. M.N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Superlattices Microstruct. 34, 459 (2003).

  27. M. Mitkova, M.N. Kozicki, J. Non-Cryst. Solids 299, 1023 (2002).

  28. C.J. Kim, S.G. Yoon, K.J. Choi, S.O. Ryu, S.M. Yoon, N.Y. Lee, B.G. Yu, J. Vac. Sci. Technol., B 24, 721 (2006).

  29. S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, K.-H. Kim, IEEE Electron Device Lett. 30, 120 (2009).

  30. R. Pandian, B.J. Kooi, G. Palasantzas, J.T.M. De Hosson, A. Pauza, Appl. Phys. Lett. 91, 152103 (2007).

  31. I. Stratan, D. Tsiulyanu, I. Eisele, J. Optoelectron. Adv. Mater. 8, 2117 (2006).

  32. P. van der Sluis, Appl. Phys. Lett. 82, 4089 (2003).

  33. Z. Wang, P.B. Griffin, J. McVittie, S. Wong, P.C. McIntyre, Y. Nishi, IEEE Electron Device Lett. 28, 14 (2007).

  34. N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, M. Aono, Jpn. J. Appl. Phys. 45, 3666 (2006).

  35. S.-W. Kim, Y. Nishi, Proc. Non-Volatile Memory Tech. Symp. 75 (2007).

  36. T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, M. Aono, Symp. VLSI Tech. Dig. Tech. 38 (2007).

  37. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, M. Aono, IEEE J. Solid-State Circuits 40, 168 (2005).

  38. T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, M. Aono, Symp. VLSI Tech. Dig. Tech. 38 (2007).

  39. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Appl. Phys. Lett. 91, 092110 (2007).

  40. N. Banno, T. Sakamoto, S. Fujieda, M. Aono, Fourth Annu. Int. Reliab. Symp. 707 (2008).

  41. Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, M. Aono, Appl. Phys. Lett. 96, 023504 (2010).

  42. S. Manhart, J. Phys. D 6, 82 (1973).

  43. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, IEEE Trans. Electron Devices 54, 2762 (2007).

  44. M. Balakrishnan, S.C.P. Thermadam, M. Mitkova, M.N. Kozicki, 2006 Proc. Non-Volatile Memory Tech. Symp. 104 (2006).

  45. C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Appl. Phys. Lett. 92, 122910 (2008).

  46. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006).

  47. K. Abe, M.P. Tendulkar, J.R. Jameson, P.B. Griffin, K. Nomura, S. Fujita, Y. Nishi, Proc. Int. Conf. IC Design Tech. 203 (2008).

  48. K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Appl. Phys. Lett. 90, 113501 (2007).

  49. Y.T. Li, S.B. Long, M.H. Zhang, Q. Liu, L.B. Shao, S. Zhang, Y. Wang, Q.Y. Zuo, S. Liu, M. Liu, IEEE Electron Device Lett. 31, 117 (2010).

  50. M. Meier, C. Schindler, S. Gilles, R. Rosezin, A. Rudiger, C. Kugeler, R. Waser, IEEE Electron Device Lett. 30, 8 (2009).

  51. C. Kuegeler, C. Nauenheim, M. Meier, A. Ruediger, R. Waser, Proc. Non- Volatile Memory Tech. Symp. 59 (2008).

  52. K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, H. Narisawa, IEDM Tech. Dig. 2007 783 (2007).

  53. S.H. Jo, K.H. Kim, W. Lu, Nano Lett. 9, 870 (2009).

  54. S.H. Jo, W. Lu, Nano Lett. 8, 392 (2008).

  55. K.H. Kim, S.H. Jo, S. Gaba, W. Lu, Appl. Phys. Lett. 96, 053106 (2010).

  56. A.J. Snell, P.G. Lecomber, J. Hajto, M.J. Rose, A.E. Owen, I.S. Osborne, J. Non-Cryst. Solids 137, 1257 (1991).

  57. R. Soni, M. Meier, A. Ruediger, B. Hollaender, C. Kuegeler, R. Waser, Microelectron. Eng. 86, 1054 (2009).

  58. S.Z. Rahaman, S. Maikap, Proc. IEEE Int. Memory Workshop 70 (2010).

  59. J. Yi, S.W. Kim, Y. Nishi, Y.T. Hwang, S.W. Chung, S.J. Hong, S.W. Park, Proc. Non-Volatile Memory Technology Symp. 32 (2008).

  60. W.C. West, K. Sieradzki, B. Kardynal, M.N. Kozicki, J. Electrochem. Soc. 145, 2971 (1998).

  61. M.N. Kozicki, W.C. West, U.S. Patent No. 5,761,115 (1998).

  62. A. Chen, 2008 Proc. Non-Volatile Memory Tech. Symp. 27 (2008).

  63. S. Dietrich, M. Angerbauer, M. Ivanov, D. Gogl, H. Hoenigschmid, M. Kund, C. Liaw, M. Markert, R. Symanczyk, L. Altimime, S. Bournat, G. Mueller, IEEE J. Solid-State Circuits 42, 839 (2007).

  64. S.H. Jo, K.H. Kim, W. Lu, Nano Lett. 9, 496 (2009).

  65. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005).

  66. J.R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, M.N. Kozicki, Appl. Phys. Lett. 99, 063506 (2011).

  67. C. Schindler, I. Valov, R. Waser, Phys. Chem. Chem. Phys. 11, 5974 (2009).

  68. M.J. Lee, S. Seo, D.C. Kim, S.E. Ahn, D.H. Seo, I.K. Yoo, I.G. Baek, D.S. Kim, I.S. Byun, S.H. Kim, I.R. Hwang, J.S. Kim, S.H. Jeon, B.H. Park, Adv. Mater 19, 73 (2007).

  69. S.E. Ahn, B.S. Kang, K.H. Kim, M.J. Lee, C.B. Lee, G. Stefanovich, C.J. Kim, Y. Park, IEEE Electron Device Lett. 30, 550 (2009).

  70. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, T. Lee, Adv. Mater. 22, 1228 (2010).

  71. W.Y. Park, G.H. Kim, J.Y. Seok, K.M. Kim, S.J. Song, M.H. Lee, C.S. Hwang, Nanotechnology, 21 (2010).

  72. S. Puthentheradam, D. Schroder, M. Kozicki, Appl. Phys. A 102, 817 (2011).

  73. E. Linn, R. Rosezin, C. Kugeler, R. Waser, Nat. Mater. 9, 403 (2010).

  74. R. Rosezin, E. Linn, L. Nielen, C. Kuegeler, R. Bruchhaus, R. Waser, IEEE Electron Device Lett. 32, 191 (2011).

  75. www.emrl.de/pu_crs.htm#crs-model.

  76. W. Wang, A. Gibby, Z. Wang, T.W. Chen, S. Fujita, P. Griffin, Y. Nishi, S. Wong, IEDM Tech. Dig. 2006 539 (2006).

  77. D.B. Strukov, K.K. Likharev, Nanotechnology 16, 888 (2005).

  78. B. Swaroop, W.C. West, G. Martinez, M.N. Kozicki, L.A. Akers, Proc. Int. Symp. Circuits and Systems 3, 33 (1998).

  79. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010).

  80. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.L. would like to thank Dr. Yuchao Yang for his help and the National Science Foundation CAREER award (ECCS-0954621) for partial financial support. D.S.J. would like to acknowledge a KIST research grant (grant no. 2E22123). The authors appreciate the careful consistency check and symbol check by Stefan Tappertzhofen, RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Jeong, D.S., Kozicki, M. et al. Electrochemical metallization cells—blending nanoionics into nanoelectronics?. MRS Bulletin 37, 124–130 (2012). https://doi.org/10.1557/mrs.2012.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.5

Navigation