Skip to main content
Log in

Computational aspects of many-body potentials

  • Three decades of many-body potentials in materials research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We discuss the relative complexity and computational cost of several popular many-body empirical potentials, developed by the materials science community over the past 30 years. The inclusion of more detailed many-body effects has come at a computational cost, but the cost still scales linearly with the number of atoms modeled. This is enabling very large molecular dynamics simulations with unprecedented atomic-scale fidelity to physical and chemical phenomena. The cost and scalability of the potentials, run in serial and parallel, are benchmarked in the LAMMPS molecular dynamics code. Several recent large calculations performed with these potentials are highlighted to illustrate what is now possible on current supercomputers. We conclude with a brief mention of high-performance computing architecture trends and the research issues they raise for continued potential development and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. * The comparison can also be stretched too far in the other direction. The analog for computer design of new materials would be to use CGI to create an improved version of George Clooney or Meryl Streep, something not even Pixar is likely planning.

  2. The benchmarks timings presented are for second-generation REBO21 and second-generation COMB22 potentials, which are later versions than the dates listed in Table I. Recent enhancements to the COMB implementation in LAMMPS show speed-ups of about 2x relative to what is presented here, but our Cray XT5 machine was not available to re-run the benchmarks.

  3. Since the LJ potential was published in 1924, we did not include it in the plot; it is an outlier in our otherwise compelling Moore’s law analysis!

  4. § For comparison, high-strength steel has a tensile strength of ~2 GPa; Kevlar is ~3.5 GPa.

References

  1. Pixar Animation Studios; www.pixar.com.

  2. M. Pickavance, online posting, www.denofgeek.com/movies/417298/the_cgi_achievements_of_pixar.html (accessed March 2012).

  3. C. Good, online posting; www.quora.com/Toy-Story-movie-series/How-much-faster-would-it-be-to-render-Toy-Story-in-2011-compared-to-how-long-it-took-in-1995 (accessed March 2012).

  4. J.E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).

    Google Scholar 

  5. A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wirkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102, 3586 (1998).

    Google Scholar 

  6. T.E. Cheatham III, M.A. Young, Biopolymers 56, 232 (2001).

    Google Scholar 

  7. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Google Scholar 

  8. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  9. M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987).

    Google Scholar 

  10. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Google Scholar 

  11. D.W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Google Scholar 

  12. S.J. Stuart, A.B. Tutein, J.A. Harrison. J. Chem. Phys. 112, 6472 (2000).

    Google Scholar 

  13. D.G. Pettifor, I.I. Oleinik, Phys. Rev. B 59, 8487 (1999).

    Google Scholar 

  14. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, J. Phys. Chem. A 105, 9396 (2001).

    Google Scholar 

  15. J. Yu, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 75, 085311 (2007).

    Google Scholar 

  16. S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101, 16141 (1994).

    Google Scholar 

  17. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).

    Google Scholar 

  18. P. Ewald, Ann. Phys. 369, 253 – 287 (1921).

    Google Scholar 

  19. LAMMPS molecular dynamics package, http://lammps.sandia.gov; Potential benchmarks, http://lammps.sandia.gov/bench.html # potentials.

  20. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Google Scholar 

  21. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002).

    Google Scholar 

  22. T.-R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 81, 125328 (2010).

    Google Scholar 

  23. A.P. Thompson, S.J. Plimpton, W. Mattson, J. Chem. Phys. 131, 154107 (2009).

    Google Scholar 

  24. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (IOP, Bristol, 1988).

    Google Scholar 

  25. E.L. Pollock, J. Glosli, Comput. Phys. Commun. 95, 93 (1996).

    Google Scholar 

  26. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Google Scholar 

  27. A.P. Bártok, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  28. T.R. Mattsson, M.P. Desjarlais, Phys. Rev. Lett. 97 (1) (2006).

  29. S. Root, R.J. Magyar, J.H. Carpenter, D.L. Hanson, T.R. Mattsson, Phys. Rev. Lett. 105 (8) (2010).

  30. G. Kresse, J. Hafner, Phys. Rev. B 49 (20), 14251 (1994).

    Google Scholar 

  31. A. Kubota, W.G. Wolfer, S.M. Valone, M.I. Baskes, J. Comput.-Aided Mater. Des. 14, 367 (2007).

    Google Scholar 

  32. C.F. Cornwell, C.R. Welch, J. Chem. Phys. 134, 204708 (2011).

    Google Scholar 

  33. H.P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K. Nomura, A.C.T. van Duin, P. Vashishta, Z. Yuan, Phys. Rev. Lett. 104, 155502 (2010).

    Google Scholar 

  34. H. Tsuzuki, P.S. Branicio, J.P. Rino. Comput. Phys. Commun. 177, 518 (2007).

    Google Scholar 

  35. J.M.D. Lane, G.S. Grest, A.P. Thompson, K.R. Cochrane, M.P. Desjarlais, T.R. Mattsson, in AIP Conference Proceedings, Shock Compression of Condensed Matter 2011, M. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, Eds., vol. 1426, p. 1435 (2012).

  36. Knowledgebase of Interatomic Models (KIM); www.openkim.org.

  37. J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. 227, 5342 (2008).

    Google Scholar 

  38. W.M. Brown, A. Kohlmeyer, S.J. Plimpton, A.N. Tharringon, Comput. Phys. Commun. 183, 449 (2012).

    Google Scholar 

  39. W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Commun. 182 (4), 898 (2011).

    Google Scholar 

  40. J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, J. Comput. Chem. 28 (16), 2618 (2007).

    Google Scholar 

  41. D.E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R.O. Dror, M.P. Eastwood, J.A. Bank, J.M. Jumper, J.K. Salmon, Y.B. Shan, W. Wriggers, Science 330, 341 (2010).

    Google Scholar 

  42. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Google Scholar 

Download references

Acknowledgments

We thank the following collaborators for their implementation of many-body potentials in LAMMPS that we discussed: Tzu-Ray Shan (COMB, U Florida/SNL), Metin Aktulga (ReaxFF, LBNL), Greg Wagner (MEAM, SNL), Don Ward (BOP, SNL), and Ase Henry (AIREBO and REBO, Georgia Tech). We also thank Alison Kubota (SNL), Charles Cornwell (US Army ERDC), Priya Vashishta (USC), and Matt Lane (SNL) for providing figures to acompany discussion of their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Plimpton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plimpton, S.J., Thompson, A.P. Computational aspects of many-body potentials. MRS Bulletin 37, 513–521 (2012). https://doi.org/10.1557/mrs.2012.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.96

Navigation