Skip to main content
Log in

Diamond NV centers for quantum computing and quantum networks

  • Nitrogen-vacancy centers: Physics and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The exotic features of quantum mechanics have the potential to revolutionize information technologies. Using superposition and entanglement, a quantum processor could efficiently tackle problems inaccessible to current-day computers. Nonlocal correlations may be exploited for intrinsically secure communication across the globe. Finding and controlling a physical system suitable for fulfilling these promises is one of the greatest challenges of our time. The nitrogen-vacancy (NV) center in diamond has recently emerged as one of the leading candidates for such quantum information technologies thanks to its combination of atom-like properties and solid-state host environment. We review the remarkable progress made in the past years in controlling electrons, atomic nuclei, and light at the single-quantum level in diamond. We also discuss prospects and challenges for the use of NV centers in future quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A. Aspect, P. Grangier, C. Roger, Phys. Rev. Lett. 47, 460 (1981).

    Google Scholar 

  2. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

    Google Scholar 

  3. R. Hanson, D.D. Awschalom, Nature 453, 1043 (2008).

    Google Scholar 

  4. R. Hanson, V.V. Dobrovitski, A.E. Feiguin, O. Gywat, D.D. Awschalom, Science 320, 352 (2008).

    Google Scholar 

  5. L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Science 314, 5797 (2006).

    Google Scholar 

  6. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009).

    Google Scholar 

  7. G. de Lange, Z. Wang, D. Ristè, V. Dobrovitski, R. Hanson, Science 330, 60 (2010).

    Google Scholar 

  8. C.A. Ryan, J.S. Hodges, D.G. Cory, Phys. Rev. Lett. 105, 200402 (2010).

    Google Scholar 

  9. B. Naydenov, F. Dolde, L.T. Hall, C. Shin, H. Fedder, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Phys. Rev. B 83, 081201 (2011).

    Google Scholar 

  10. T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli, D.A. Lidar, D.D. Awschalom, R. Hanson, V.V. Dobrovitski, Nature 484 (7392), 82 (2012).

    Google Scholar 

  11. S. Takahashi, R. Hanson, J. van Tol, M.S. Sherwin, D.D. Awschalom, Phys. Rev. Lett. 101, 047601 (2008).

    Google Scholar 

  12. P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Science 336, 1283 (2012).

    Google Scholar 

  13. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004).

    Google Scholar 

  14. G.D. Fuchs, V.V. Dobrovitski, D.M. Toyli, F.J. Heremans, D.D. Awschalom, Science 326, 1520 (2009).

    Google Scholar 

  15. M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007).

    Google Scholar 

  16. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 276, 5321 (1997).

    Google Scholar 

  17. P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P.R. Hemmer, J. Wrachtrup, F. Jelezko, Science 329, 542 (2010).

    Google Scholar 

  18. L. Robledo, L. Childress, H. Bernien, B. Hensen, P.F.A. Alkemade, R. Hanson, Nature 477, 574 (2011).

    Google Scholar 

  19. W. Pfaff, T.H. Taminiau, L. Robledo, H. Bernien, M. Markham, D.J. Twitchen, R. Hanson, Nat. Phys. 9, 29 (2013).

    Google Scholar 

  20. A. Bermudez, F. Jelezko, M.B. Plenio, A. Retzker, Phys. Rev. Lett. 107, 150503 (2011).

    Google Scholar 

  21. N.Y. Yao, L. Jiang, A.V. Gorshkov, P.C. Maurer, G. Giedke, J.I. Cirac, M.D. Lukin, Nat. Commun. 3, 800 (2012).

    Google Scholar 

  22. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, H. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6, 249 (2010).

    Google Scholar 

  23. D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Nature 449, 68 (2007).

    Google Scholar 

  24. E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sorensen, P. Hemmer, A. Zibrov, M. Lukin, Nature 466, 730 (2010).

    Google Scholar 

  25. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson, Phys. Rev. Lett. 108, 043604 (2012).

    Google Scholar 

  26. A. Sipahigil, M.L. Goldman, E. Togan, Y. Chu, M. Markham, D.J. Twitchen, A.S. Zibrov, A. Kubanek, M.D. Lukin, Phys. Rev. Lett. 108, 143601 (2012).

    Google Scholar 

  27. V. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M.C. Fu, A. Stacey, D.A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, R.G. Beausoleil, Phys. Rev. Lett. 108, 206401 (2012).

    Google Scholar 

  28. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, L. Childress, T.H. Taminiau, M. Markham, D.J. Twitchen, R. Hanson (2012), http://arxiv.org/abs/1212.6136.

  29. F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, J. Wrachtrup (2012), http://arxiv.org/abs/1212.2804.

Download references

Acknowledgements

R.H. acknowledges support from the Dutch Organization for Fundamental Research on Matter (FOM), the European Research Council through a Starting Grant, and the EU SOLID and DIAMANT programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Childress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, L., Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bulletin 38, 134–138 (2013). https://doi.org/10.1557/mrs.2013.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.20

Navigation