Skip to main content
Log in

In pursuit of damage tolerance in engineering and biological materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The ability to image and quantify material behavior in real time at nano to near-macro length scales, preferably in three dimensions, is a crucial feature of modern materials science. Here, we examine such an approach to characterize the mechanical properties of three diverse classes of materials: (1) biological materials, principally bone, using both in situ small-/wide-angle x-ray scattering/diffraction to probe nanoscale deformation behavior and x-ray computed microtomography to study microscale damage mechanisms; (2) biomimetic materials, specifically a nacre-like ceramic, where microtomography is used to identify toughening mechanisms; (3) synthetic materials, specifically ceramic textile composites, using in situ microtomography to quantify the salient mechanical damage at ultrahigh temperatures. The mechanistic insights for the understanding of damage evolution and fracture afforded by these techniques are undeniable; as such, they can help provide a basis for the achievement of enhanced damage tolerance in structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. * The R-curve provides an assessment of the fracture toughness in the presence of subcritical crack growth involving measurements of the crack-driving force (e.g., the stress intensity K or J -integral) (i.e., the rate of change in potential energy per unit increase in crack area) as a function of crack extension (Δa). The value of the driving force at Δ a → 0 provides a measure of the crack-initiation toughness, whereas the slope of the R-curve can be used to characterize the crack-growth toughness.

  2. † There are several different types of collagen in the human body that can be distinguished by their chemical compositions. Type I is considered to be the most abundant and is found in bones and skin.

  3. ‡ The mineral strain does not significantly change,7 principally because the hydroxyapatite has a stiffness roughly three orders of magnitude larger than the collagen.

References

  1. S. Weiner, H.D. Wagner, Annu. Rev. Mater. Res. 28, 271 (1998).

    Google Scholar 

  2. M.E. Launey, M.J. Buehler, R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25 (2010).

    Google Scholar 

  3. R.K. Nalla, J.H. Kinney, R.O. Ritchie, Nat. Mater. 2, 164 (2003).

    Google Scholar 

  4. R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Google Scholar 

  5. H.S. Gupta, J. Seto, W. Wagermeier, P. Zaslansky, P. Boesecke, P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).

    Google Scholar 

  6. A. Haboub, H.A. Bale, J.R. Nasiatka, B.N. Cox, D.B. Marshall, R.O. Ritchie, A.A. MacDowell, Rev. Sci. Instrum. 85, 83702 (2014).

    Google Scholar 

  7. E.A. Zimmermann, E. Schaible, H. Bale, H.D. Barth, S.Y. Tang, P. Reichert, B. Busse, T. Alliston, J.W. Ager, R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 108, 14416 (2011).

    Google Scholar 

  8. H.D. Barth, E.A. Zimmermann, E. Schaible, S.Y. Tang, T. Alliston, R.O. Ritchie, Biomaterials 32, 8892 (2011).

    Google Scholar 

  9. A. Groso, R. Abela, M. Stampanoni, Opt. Express 14, 8103 (2006).

    Google Scholar 

  10. K.J. Koester, J.W. Ager, R.O. Ritchie, Nat. Mater. 7, 672 (2008).

    Google Scholar 

  11. R.K. Nalla, J.J. Kruzic, J.H. Kinney, M. Balooch, J.W. Ager, R.O. Ritchie, Mater. Sci. Eng. C 26, 1251 (2006).

    Google Scholar 

  12. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, FL, 2005).

    Google Scholar 

  13. S.R. Cummings, W. Browner, D.R. Black, M.C Nevitt, H.K. Genant, J. Cauley, K. Ensrud, J. Scott, T.M. Vogt, Lancet 341, 72 (1993).

    Google Scholar 

  14. S.L. Hui, C.W. Slemenda, C.C. Johnston, J. Clin. Invest. 81, 1804 (1988).

    Google Scholar 

  15. P. Zioupos, J.D. Currey, Bone 22, 57 (1998).

    Google Scholar 

  16. R.W. McCalden, J.A. McGeough, M.B. Barker, C.M. Courtbrown, J. Bone Joint Surg. Am. 75A, 1193 (1993).

    Google Scholar 

  17. D.R. Sell, V.M. Monnier, J. Biol. Chem. 264, 21597 (1989).

    Google Scholar 

  18. A.J. Bailey, Mech. Ageing Dev. 122, 735 (2001).

    Google Scholar 

  19. D. Vashishth, G.J. Gibson, J.I. Khoury, M.B. Schaffler, J. Kimura, D.P. Fyhrie, Bone 28, 195 (2001).

    Google Scholar 

  20. B. Busse, M. Hahn, T. Schinke, K. Püschel, G.N. Duda, M. Amling, J. Biomed. Mater. Res. A 92A, 1440 (2010).

    Google Scholar 

  21. A. Carriero, E.A. Zimmermann, A. Paluszny, S.Y. Tang, H. Bale, B. Busse T. Alliston, G. Kazakia, R.O. Ritchie, S.J. Shefelbine, J. Bone Miner. Res. 29, 1392 (2014).

    Google Scholar 

  22. A. Forlino, W.A. Cabral, A.M. Barnes, J.C. Marini, Nat. Rev. Endocrinol. 7, 540 (2011).

    Google Scholar 

  23. W.G. Cole, Clin. Orthop. Relat. Res. 401, 6 (2002).

    Google Scholar 

  24. F. Rauch, F.H. Glorieux, Lancet 363, 1377 (2004).

    Google Scholar 

  25. W. Traub, T. Arad, U. Vetter, S. Weiner, Matrix Biol. 14, 337 (1994).

    Google Scholar 

  26. R. Bargman, A. Huang, A.L. Boskey, C. Raggio, N. Pleshko, Connect. Tissue Res. 51, 123 (2010).

    Google Scholar 

  27. A.C. Nicholls, G. Osse, H.G. Schloon, H.G. Lenard, S. Deak, J.C. Myers, D.J. Prockop, W.R.F. Weigel, P. Fyrer, F.M. Pope, J. Med. Genet. 21, 257 (1984).

    Google Scholar 

  28. M. Vanleene, S.J. Shefelbine, Bone 53, 507 (2013).

    Google Scholar 

  29. J. Saban, M.A. Zussman, R. Havey, A.G. Patwardhan, G.B. Schneider, D. King, Bone 19, 575 (1996).

    Google Scholar 

  30. B. Busse, H.A. Bale, E.A. Zimmermann, B. Panganiban, H.D. Barth, A. Carriero, E. Vettorazzi, J. Zustin, M. Hahn, J.W. Ager, K. Püschel, M. Amling, R.O. Ritchie, Sci. Transl. Med. 5, 193ra88 (2013).

    Google Scholar 

  31. B. Ettinger, D.B. Burr, R.O. Ritchie, Bone 55, 495 (2013).

    Google Scholar 

  32. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, Prog. Mater. Sci. 53, 1 (2008).

    Google Scholar 

  33. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, J. Mech. Phys. Solids 55, 306 (2007).

    Google Scholar 

  34. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, J. Mater. Res. 16, 2485 (2001).

    Google Scholar 

  35. Y. Shao, H.-P. Zhao, X.-Q. Feng, H. Gao, J. Mech. Phys. Solids 60, 1400 (2012).

    Google Scholar 

  36. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322, 1516 (2008).

    Google Scholar 

  37. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311, 515 (2006).

    Google Scholar 

  38. H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.L. Parkinson, B.N. Cox, D.B. Marshall, R.O. Ritchie, Nat. Mater. 12, 40 (2013).

    Google Scholar 

  39. D.M. Dimiduk, J.H. Perepezko, MRS Bull. 28, 639 (2003).

    Google Scholar 

  40. D.B. Marshall, B.N. Cox, Annu. Rev. Mater. Res. 38, 425 (2008).

    Google Scholar 

  41. G.N. Morscher, H.M. Yun, J.A. DiCarlo, J. Am. Ceram. Soc. 88, 146 (2005).

    Google Scholar 

  42. K. Nakano, A. Kamiya, Y. Nishino, T. Imura, T.W. Chou, J. Am. Ceram. Soc. 78, 2811 (1995).

    Google Scholar 

  43. S. Schmidt, S. Beyer, H. Immich, H. Knabe, R. Meistring, A. Gessler, Int. J. Appl. Ceram. Technol. 2, 85 (2005).

    Google Scholar 

  44. D.B. Marshall, A.G. Evans, J. Am. Ceram. Soc. 68, 225 (1985).

    Google Scholar 

  45. B.N. Cox, H.A. Bale, M. Begley, M. Blacklock, B.-C. Do, T. Fast, M. Naderi, M. Novak, V.P. Rajan, R.G. Rinaldi, R.O. Ritchie, M.N. Rossol, J.H. Shaw, O. Sudre, Q.D. Yang, F.W. Zok, D.B. Marshall, Annu. Rev. Mater. Res. 44, 479 (2014).

    Google Scholar 

  46. B. Budiansky, A.G. Evans, J.W. Hutchinson, Int. J. Solids Struct. 32, 315 (1995).

    Google Scholar 

  47. T. Okabe, M. Nishikawa, W.A. Curtin, Compos. Sci. Technol. 68, 3067 (2008).

    Google Scholar 

Download references

Acknowledgments

I thank my colleagues, postdocs, and students who participated in this work, especially Drs. Tony Tomsia, Bernd Gludovatz, Hrishi Bale, Max Launey, Alessandra Carriero, and Liz Zimmermann. Thanks also to Dr. Simon Tang for his cross-linking measurements, Drs. David Marshall and Brian Cox for their involvement in our CMC research, and the Lawrence Berkeley National Laboratory’s Advanced Light Source (ALS) beamline scientists Dr. Alastair MacDowell and Eric Schaible for help with our synchrotron studies. Work on mechanical properties/biomimetic materials was funded by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02–05CH11231, which also supports the x-ray synchrotron beamlines 7.3.3 (SAXS/WAXD) and 8.3.2 (microtomography) at the ALS. Studies on bone were supported by the National Institute of Health (NIH/NIDCR) under grant 5R01 DE015633, and on CMCs by AFOSR/NASA via Teledyne under contract FA9550–09–1-0477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Ritchie.

Additional information

This article is based on a presentation given by Robert O. Ritchie for the David Turnbull Lectureship on December 3, 2013, at the Materials Research Society Fall Meeting in Boston. Ritchie received this award for his “pioneering contributions to, and teaching us all how to think about, the mechanistic role of microstructure in governing fatigue and fracture in a variety of materials systems, and communicating his scientific insights to the world audience through eloquent lectures and seminal publications.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritchie, R.O. In pursuit of damage tolerance in engineering and biological materials. MRS Bulletin 39, 880–890 (2014). https://doi.org/10.1557/mrs.2014.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.197

Navigation