Skip to main content
Log in

Hydration layer structure at solid–water interfaces

  • Water at Functional Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The solid–water interface is ubiquitous in natural and synthetic systems as the primary site for chemical reactions under near-ambient conditions. Examples include the interactions of contaminants with mineral–water interfaces in natural environments, electrochemical reactions at the electrode-electrolyte interface relevant to energy storage (e.g., ion adsorption/electrical double layer formation, ion insertion), and oxidation of structural materials (e.g., rust). Yet many of these phenomena remain largely mysterious at a mechanistic level. The x-ray reflectivity technique, using highly penetrating hard x-rays, directly probes the solid–water interfaces through in situ studies. This approach has provided new insights into the molecular-scale structures and processes that occur at these “wet” interfaces. In this article, we review recent advances in the understanding of these systems, focusing specifically on the organization of interfacial “hydration layers” and the important role of adsorbed ions at charged solid–liquid interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Lonsdale, Proc. R. Soc. Lond. A 247, 424 (1958).

    Google Scholar 

  2. F. Franks, Water: A Comprehensive Treatise (Plenum Publishing, New York, 1982), p. 484.

  3. M.C.R. Symons, Nature 239, 257 (1972).

    Google Scholar 

  4. Y.L. Xie, K.F. Ludwig, G. Morales, D.E. Hare, C.M. Sorensen, Phys. Rev. Lett. 71, 2050 (1993).

    Google Scholar 

  5. D.T. Richens, The Chemistry of Aqua Ions (Wiley, Chichester, UK, 1997).

    Google Scholar 

  6. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, UK, 1988).

    Google Scholar 

  7. W. Stumm, Chemistry of the Solid–Water Interface: Processes at the Mineral– Water and Particle–Water Interface in Natural Systems (Wiley, New York, 1992).

    Google Scholar 

  8. A.J. Gratz, P. Bird, Geochim. Cosmochim. Acta 57, 965 (1993).

    Google Scholar 

  9. I.K. Robinson, D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992).

    Google Scholar 

  10. P. Fenter, Rev. Mineral. Geochem. 49, 149 (2002).

    Google Scholar 

  11. D.A. Doshi, E.B. Watkins, J.N. Israelachvili, J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).

    Google Scholar 

  12. D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, F. Schreiber, Langmuir 19, 2284 (2003).

    Google Scholar 

  13. Q. Du, E. Freysz, Y.R. Shen, Science 264, 826 (1994).

    Google Scholar 

  14. V. Ostroverkhov, G.A. Waychunas, Y.R. Shen, Chem. Phys. Lett. 386, 144 (2004).

    Google Scholar 

  15. J. Wang, B.M. Ocko, A.J. Davenport, H.S. Isaacs, Phys. Rev. B: Condens. Matter 46, 10321 (1992).

    Google Scholar 

  16. M.F. Toney, J.N. Howard, J. Richer, G.L. Borges, J.G. Gordon, O.R. Melroy, D.G. Wiesler, D. Yee, L.B. Sorensen, Nature 368, 444 (1994).

    Google Scholar 

  17. M.F. Reedijk, J. Arsic, F.F.A. Hollander, S.A. de Vries, E. Vlieg, Phys. Rev. Lett. 90, 066103 (2003).

    Google Scholar 

  18. J. Arsic, D. Kaminski, P. Poodt, E. Vlieg, Phys. Rev. B. 69, 245406 (2004).

    Google Scholar 

  19. P.J. Eng, T.P. Trainor, G.E. Brown, G.A. Waychunas, M. Newville, S.R. Sutton, M.L. Rivers, Science 288, 1029 (2000).

    Google Scholar 

  20. J.G. Catalano, Geochim. Cosmochim. Acta 75, 2062 (2011).

    Google Scholar 

  21. Z. Zhang, P. Fenter, L. Cheng, N.C. Sturchio, M.J. Bedzyk, M. Predota, A. Bandura, J.D. Kubicki, S.N. Lvov, P.T. Cummings, A.A. Chialvo, M.K. Ridley, P. Benezeth, L. Anovitz, D.A. Palmer, M.L. Machesky, D.J. Wesolowski, Langmuir 20, 4954 (2004).

    Google Scholar 

  22. Z. Zhang, P. Fenter, N.C. Sturchio, M.J. Bedzyk, M.L. Machesky, D.J. Wesolowski, Surf. Sci. 601, 1129 (2007).

    Google Scholar 

  23. L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, N.C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001).

    Google Scholar 

  24. P. Fenter, S. Kerisit, P. Raiteri, J.D. Gale, J. Phys. Chem. C 117, 5028 (2013).

    Google Scholar 

  25. P. Fenter, N.C. Sturchio, Geochim. Cosmochim. Acta 97, 58 (2012).

    Google Scholar 

  26. M. Mezger, S. Schöder, H. Reichert, H. Schröder, J. Okasinski, V. Honkimäki, J. Ralston, J. Bilgram, R. Roth, H. Dosch, J. Chem. Phys. 128, 244705 (2008).

    Google Scholar 

  27. A. Poynor, L. Hong, I.K. Robinson, S. Granick, Z. Zhang, P.A. Fenter, Phys. Rev. Lett. 97, 266101 (2006).

    Google Scholar 

  28. A. Uysal, M.Q. Chu, B. Stripe, A. Timalsina, S. Chattopadhyay, C.M. Schlepütz, T.J. Marks, P. Dutta, Phys. Rev. B. 88, 035431 (2013).

    Google Scholar 

  29. H. Zhou, P. Ganesh, V. Presser, M.C.F. Wander, P. Fenter, P.R.C. Kent, D.E. Jiang, A.A. Chialvo, J. McDonough, K.L. Shuford, Y. Gogotsi, Phys. Rev. B. 85, 035406 (2012).

    Google Scholar 

  30. P. Fenter, N.C. Sturchio, Prog. Surf. Sci. 77, 171 (2004).

    Google Scholar 

  31. P. Geissbühler, P. Fenter, E. DiMasi, G. Srajer, L.B. Sorensen, N.C. Sturchio, Surf. Sci. 573, 191 (2004).

    Google Scholar 

  32. J.N. Israelachvili, R.M. Pashley, Nature 306, 249 (1983).

    Google Scholar 

  33. R.M. Pashley, J.N. Israelachvili, J. Colloid Interface Sci. 101, 511 (1984).

    Google Scholar 

  34. Y.J. Shin, Y.Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z.X. Shen, C.S. Bhatia, H. Yang, Langmuir 26, 3798 (2010).

    Google Scholar 

  35. J.D. Emery, B. Detlefs, H.J. Karmel, L.O. Nyakiti, D.K. Gaskill, M.C. Hersam, J. Zegenhagen, M.J. Bedzyk, Phys. Rev. Lett. 111, 215501 (2013).

    Google Scholar 

  36. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, J.D. Riley, Phys. Rev. B. 77, 155303 (2008).

    Google Scholar 

  37. D.J. Wesolowski, J.O. Sofo, A.V. Bandura, Z. Zhang, E. Mamontov, M. Předota, N. Kumar, J.D. Kubicki, P.R.C. Kent, L. Vlcek, M.L. Machesky, P.A. Fenter, P.T. Cummings, L.M. Anovitz, A.A. Skelton, J. Rosenqvist, Phys. Rev. B. 85, 167401 (2012).

    Google Scholar 

  38. S.S. Lee, P. Fenter, K.L. Nagy, N.C. Sturchio, Langmuir 28, 8637 (2012).

    Google Scholar 

  39. S.S. Lee, P. Fenter, C. Park, N.C. Sturchio, K.L. Nagy, Langmuir 26, 16647 (2010).

    Google Scholar 

  40. A.V. Bandura, D.G. Sykes, V. Shapovalov, T.N. Troung, J.D. Kubicki, R.A. Evarestov, J. Phys. Chem. B 108, 7844 (2004).

    Google Scholar 

  41. S. Kerisit, S.C. Parker, J. Am. Chem. Soc. 126, 10152 (2004).

    Google Scholar 

  42. S.H. Park, G. Sposito, Phys. Rev. Lett. 89, 085501 (2002).

    Google Scholar 

  43. S. Chodankar, E. Perret, K. Nygård, O. Bunk, D.K. Satapathy, R.M. Espinosa Marzal, T.E. Balmer, M. Heuberger, J.F. van der Veen, Europhys. Lett. 99, 26001 (2012).

    Google Scholar 

Download references

Acknowledgements

The work described herein is the product of the contributions of many people over many years. Of particular note are the long-term collaborations with Neil C. Sturchio, Kathryn L. Nagy, David J. Wesolowski, and Michael J. Bedzyk, as well as the many current and past members of the Interfacial Processes Group at Argonne National Laboratory. This material is primarily based upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences (Geoscience subprogram, Nicholas Woodward), with the work on TiO2 done through a multi-institutional collaboration led by Oak Ridge National Laboratory. Work on graphene-water interactions was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Measurements were performed at the Advanced Photon Source, a DOE Office of Science User Facility. The manuscript was created at UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fenter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenter, P., Lee, S.S. Hydration layer structure at solid–water interfaces. MRS Bulletin 39, 1056–1061 (2014). https://doi.org/10.1557/mrs.2014.252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.252

Navigation