Skip to main content

Advertisement

Log in

In situ and operando transmission electron microscopy of catalytic materials

  • Frontiers of in situ electron microscopy
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure–reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments in the application of ETEM to gas-phase catalysis over the past 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. G. Ertl, H. Knözinger, J. Weitkamp, Handbook of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997).

    Google Scholar 

  2. G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis 2nd ed.(Wiley-VCH, Weinheim, Germany, 2010), p. 442.

    Google Scholar 

  3. T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsoe, C.J.H. Jacobson, Science 294, 1508 (2001).

    CAS  Google Scholar 

  4. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. White, J. Catal. 26, 51 (1972).

    CAS  Google Scholar 

  5. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, J. Catal. 30, 86 (1973).

    CAS  Google Scholar 

  6. R. Sharma, J. Mater. Res. 20 (7), 1695 (2005).

    CAS  Google Scholar 

  7. P.L. Gai, E.D. Boyes, in In-Situ Microscopy in Materials Research, P.L. Gai, Ed. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997), pp. 123–146.

    Google Scholar 

  8. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, MRS Bull. 32 (12), 1044 (2007).

    CAS  Google Scholar 

  9. R. Sharma, P.A. Crozier, in Handbook of Microscopy for Nano-technology, N. Yao, Z.L. Wang, Eds. (Kluwer Academic Publishers, New York, 2005), pp. 531–563.

    Google Scholar 

  10. S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, C.R. Henry, Ultramicroscopy 106, 503 (2006).

    CAS  Google Scholar 

  11. G.M. Parkinson, Catal. Lett. 2, 303 (1989).

    CAS  Google Scholar 

  12. J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, Ultramicroscopy 108, 993 (2008).

    CAS  Google Scholar 

  13. T. Alan, T. Yokosawa, J. Gaspar, G. Pandraud, O. Paul, F. Creemer, P.M. Sarro, H.W. Zandbergen, Appl. Phys. Lett. 100, 4 (2012).

    Google Scholar 

  14. T. Yokosawa, T. Alan, G. Pandraud, B. Dam, H. Zandbergen, Ultramicroscopy 112, 47 (2012).

    CAS  Google Scholar 

  15. S.B. Vendelbo, P.J. Kooyman, J.F. Creemer, B. Morana, L. Mele, P. Dona, B.J. Nelissen, S. Helveg, Ultramicroscopy 133, 72 (2013).

    CAS  Google Scholar 

  16. T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, Mater. Sci. Technol. 26, 1338 (2010).

    CAS  Google Scholar 

  17. P.R. Swann, N.J. Tighe, paper presented at the 5th European Congress on Electron Microscopy., Manchester, UK, Institute of Physics, Royal Microscopical Society, 1972.

    Google Scholar 

  18. R.C. Doole, G.M. Parkinson, J.M. Stead, Inst. Phys. Conf. Ser. 119, 157 (1991).

    CAS  Google Scholar 

  19. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, H.K. Birnbaum, Rev. Sci. Instrum. 62, 1438 (1991).

    CAS  Google Scholar 

  20. E.D. Boyes, P.L. Gai, Ultramicroscopy 67, 219 (1997).

    CAS  Google Scholar 

  21. R. Sharma, K. Weiss, Microsc. Res. Tech. 42, 270 (1998).

    CAS  Google Scholar 

  22. P.L. Hansen, J.B. Wagner, Proc. 12th Eur. Congr. Electron Microsc. (Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000), vol. 2, pp. 537–538.

    Google Scholar 

  23. J.R. Jinschek, S. Helveg, Micron 43, 1156 (2012).

    CAS  Google Scholar 

  24. P. Li, J. Liu, N. Nag, P.A. Crozier, J. Catal. 262, 73 (2009).

    CAS  Google Scholar 

  25. R. Banerjee, P.A. Crozier, J. Phys. Chem. C 116, 11486 (2012).

    CAS  Google Scholar 

  26. R. Dehghan, T.W. Hansen, J.B. Wagner, A. Holmen, E. Rytter, O. Borg, J.C. Walmsley, Catal. Lett. 141, 754 (2011).

    CAS  Google Scholar 

  27. H.L.L. Xin, E.A. Pach, R.E. Diaz, E.A. Stach, M. Salmeron, H.M. Zheng, ACS Nano 6, 4241 (2012).

    CAS  Google Scholar 

  28. Q. Jeangros, A. Faes, J.B. Wagner, T.W. Hansen, U. Aschauer, J. Van Herle, A. Hessler-Wyser, R.E. Dunin-Borkowski, Acta Mater. 58, 4578 (2010).

    CAS  Google Scholar 

  29. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989).

    CAS  Google Scholar 

  30. S. Giorgio, M. Cabie, C.R. Henry, Gold Bull. 41, 167 (2008).

    CAS  Google Scholar 

  31. T. Uchiyama, H. Yoshida, Y. Kuwauchi, S. Ichikawa, S. Shimada, M. Haruta, S. Takeda, Angew. Chem. Int. Ed. 50, 10157 (2011).

    CAS  Google Scholar 

  32. H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K.J. Sun, S. Tanaka, M. Kohyama S. Shimada, M. Haruta, S. Takeda, Science 335, 317 (2012).

    CAS  Google Scholar 

  33. S. Chenna, R. Banerjee, P.A. Crozier, ChemCatChem 3, 1051 (2011).

    CAS  Google Scholar 

  34. S. Chenna, P.A. Crozier, Micron 43, 1188 (2012).

    CAS  Google Scholar 

  35. R.J. Gorte, J.M. Vohs, in Annual Review of Chemical and Biomolecular Engineering, J.M. Prausnitz, Ed. (Annual Reviews, Palo Alto, CA, 2011), vol. 2, pp. 9–30.

  36. M.P. Yeste, J.C. Hernandez, S. Bernal, G. Blanco, J.J. Calvino, J.A. Perez-Omil, J.M. Pintado, Catal. Today 141, 409 (2009).

    CAS  Google Scholar 

  37. P.A. Crozier, R. Wang, R. Sharma, Ultramicroscopy 108, 1432 (2008).

    CAS  Google Scholar 

  38. R. Wang, P.A. Crozier, R. Sharma, J. Phys. Chem. C 113, 5700 (2009).

    CAS  Google Scholar 

  39. V. Sharma, P.A. Crozier, R. Sharma, J.B. Adams, Catal. Today 180, 2 (2012).

    CAS  Google Scholar 

  40. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    CAS  Google Scholar 

  41. F. Cavalca, A.B. Laursen, B.E. Kardynal, R.E. Dunin-Borkowski, S. Dahl, J.B. Wagner, T.W. Hansen, Nanotechnology 23, 075705 (2012).

    CAS  Google Scholar 

  42. B.K. Miller, P.A. Crozier, Microsc. Microanal. 19, 461 (2013).

    CAS  Google Scholar 

  43. L.X. Zhang, B.K. Miller, P.A. Crozier, Nano Lett. 13, 679 (2013).

    Google Scholar 

  44. A.K. Datye, Catal. Today 111, 59 (2006).

    CAS  Google Scholar 

  45. R.-J. Liu, P.A. Crozier, C.M. Smith, D.A. Hucul, J. Blackson, G. Salaita, Appl. Catal. A 282, 111 (2005).

    CAS  Google Scholar 

  46. T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Acc. Chem. Res. 46, 1720 (2013).

    CAS  Google Scholar 

  47. A.T. DeLaRiva, T.W. Hansen, S.R. Challa, A.K. Datye, J. Catal. 308, 291 (2013).

    Google Scholar 

  48. S.R. Challa, A.T. Delariva, T.W. Hansen, S. Helveg, J. Sehested, P.L. Hansen, F. Garzon, A.K. Datye, J. Am. Chem. Soc. 133, 20672 (2011).

    CAS  Google Scholar 

  49. S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, J. Am. Chem. Soc. 132, 7968 (2010).

    CAS  Google Scholar 

  50. A.D. Benavidez, L. Kovarik, A. Genc, N. Agrawal, E.M. Larsson, T.W. Hansen, A.M. Karim, A.K. Datye, ACS Catal. 2, 2349 (2012).

    CAS  Google Scholar 

  51. S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, J. Catal. 281, 147 (2011).

    CAS  Google Scholar 

  52. M.A. Bañares, I.E. Wachs, J. Raman Spectrosc. 33, 359 (2002).

    Google Scholar 

  53. S.B. Vendelbo, C.F. Elkjær, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Nat. Mater. 13, 884 (2014).

    CAS  Google Scholar 

  54. B.K. Miller, P.A. Crozier, Microsc. Microanal. 20, 815 (2014).

    CAS  Google Scholar 

  55. P.A. Crozier, S. Chenna, Ultramicroscopy 111, 177 (2011).

    CAS  Google Scholar 

  56. S. Chenna, P.A. Crozier, ACS Catal. 2, 2395 (2012).

    CAS  Google Scholar 

  57. B.K. Miller, P.A. Crozier, Microsc. Microanal. 20, 1564 (2014).

    Google Scholar 

Download references

Acknowledgements

P.A.C. acknowledges financial support from the US NSF (CTS-0306688, CBET 0553445, and CBET 1134464) and US Department of Energy (DE-SC0004954). He also gratefully acknowledges the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. T.W.H. acknowledges the A.P. Møller and Chastine McKinney Møller Foundation for its contribution toward the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark. Both authors are grateful to all of the students, postdocs, and colleagues with whom they have collaborated over the years.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crozier, P.A., Hansen, T.W. In situ and operando transmission electron microscopy of catalytic materials. MRS Bulletin 40, 38–45 (2015). https://doi.org/10.1557/mrs.2014.304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.304

Navigation