Skip to main content
Log in

Advances in 3D focused ion beam tomography

  • Focused Ion Beam Technology and Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article summarizes recent technological improvements of focused ion beam tomography. New in-lens (in-column) detectors have a higher sensitivity for low energy electrons. In combination with energy filtering, this leads to better results for phase segmentation and quantitative analysis. The quality of the 3D reconstructions is also improved with a refined drift correction procedure. In addition, the new scanning strategies can increase the acquisition speed significantly. Furthermore, fast spectral and elemental mappings with silicon drift detectors open up new possibilities in chemical analysis. Examples of a porous superconductor and a solder with various precipitates are presented, which illustrate that combined analysis of two simultaneous detector signals (secondary and backscattered electrons) provides reliable segmentation results even for very complex 3D microstructures. In addition, high throughput elemental analysis is illustrated for a multi-phase Ni-Ti stainless steel. Overall, the improvements in resolution, contrast, stability, and throughput open new possibilities for 3D analysis of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. L. Holzer, M. Cantoni, in Nanofabrication Using Focused Ion and Electron Beams—Principles and Applications, I. Utke, S. Moshkalev, P. Russell, Eds. (Oxford University Press, New York, 2012), pp. 410–435.

  2. B.J. Inkson, T. Steer, G. Möbus, T. Wagner, J. Microsc. 201, 256 (2001).

    Google Scholar 

  3. B.J. Inkson, S. Olsen, D.J. Norris, A.G. O’Neill, G. Möbus, in Microsc. Semicond. Mater. Conf. 180 (Institute of Physics Conference, Cambridge, 2003), pp. 611–616.

  4. M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, P. Munroe, MRS Bull. 32, 408 (2007).

    Google Scholar 

  5. L. Holzer, F. Indutnyi, P. Gasser, B. Muench, M. Wegmann, J. Microsc. 216, 84 (2004).

    Google Scholar 

  6. L. Holzer, B. Muench, M. Wegmann, P. Gasser, R.J. Flatt, J. Am. Ceram. Soc. 89, 2577 (2006).

    Google Scholar 

  7. F. Lasagni, A. Lasagni, C. Holzapfel, F. Mücklich, H.P. Degischer, Adv. Eng. Mater. 8, 719 (2006).

    Google Scholar 

  8. M. Schaffer, J. Wagner, B. Schaffer, M. Schmied, H. Mulders, Ultramicroscopy 107, 587 (2007).

    Google Scholar 

  9. J. Konrad, S. Zaefferer, D. Raabe, Acta Mater. 54, 1369 (2006).

    Google Scholar 

  10. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, J.P. Simmons, Scr. Mater. 55, 23 (2006).

    Google Scholar 

  11. M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, S. Ghosh, Mater. Charact. 57, 259 (2006).

    Google Scholar 

  12. S. Zaefferer, S.I. Wright, D. Raabe, Metall. Mater. Trans. A 39A, 374 (2008).

  13. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, A. Barnett, Nat. Mater. 5, 541 (2006).

    Google Scholar 

  14. J.R. Wilson, J.S. Cronin, S.A. Barnett, Scr. Mater. 65, 67 (2011).

    Google Scholar 

  15. H. Iwai, N. Shikazono, T. Matsui, H. Teshima, H. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, H. Yoshida, J. Power Sources 195, 955 (2010).

    Google Scholar 

  16. N. Vivet, S. Chupin, E. Estrade, A. Richard, S. Bonnamy, D. Rochais, E. Bruneton, J. Power Sources 196, 9989 (2011).

    Google Scholar 

  17. N. Shikazono, D. Kanno, K. Matsuzaki, H. Teshima, S. Sumino, N. Kasagi, J. Electrochem. Soc. 157, B665 (2010).

    Google Scholar 

  18. L. Holzer, D. Wiedenmann, B. Muench, L. Keller, M. Prestat, P. Gasser, I. Robertson, B. Grobéty, J. Mater. Sci. 48, 2934 (2013).

    Google Scholar 

  19. L. Holzer, B. Iwanschitz, T. Hocker, L. Keller, G. Sartoris, P. Gasser, B. Muench, J. Power Sources 242, 179 (2013).

    Google Scholar 

  20. P.R. Shearing, L.E. Howard, P.S. Jorgensen, N.P. Brandon, S.J. Harris, Electrochem. Commun. 12, 374 (2010).

    Google Scholar 

  21. L.M. Keller, L. Holzer, R. Wepf, P. Gasser, B. Münchand, P. Marschall, Phys. Chem. Earth 36, 1539 (2011).

    Google Scholar 

  22. L. Keller, L. Holzer, P. Schuetz, P. Gasser, J. Geophys. Res. 118, 1 (2013).

    Google Scholar 

  23. M.D.G. Steigerwald, R. Arnold, J. Bihr, V. Drexel, H. Jaksch, D. Preikszas, J.P. Vermeulen, Microsc. Microanal. 10 (Suppl. 2), 1372 (2004).

    Google Scholar 

  24. D. Pohl, H. Jaksch, Prakt. Metallogr. (Germany) 33 (5), 235 (1996).

    Google Scholar 

  25. M. Cantoni, C. Genoud, C. Hébert, G. Knott, Microsc. & Anal. 24 (4), 13 (2010).

    Google Scholar 

  26. Atlas3D, Carl Zeiss; http://microscopy.zeiss.com/microscopy/en_de/products/microscope-software/atlas.

  27. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9 (7), 676 (2012).

    Google Scholar 

  28. 12th European Workshop of the European Microbeam Analysis Society on Modern Developments and Applications in Microbeam Analysis, Angers, France, May 15–19, 2011; http://www.emas-web.net/Content/archive2011.html.

  29. D. Uglietti, V. Abächerli, M. Cantoni, R. Flükiger, IEEE Trans. Appl. Supercond. 17, 2 (2007).

    Google Scholar 

  30. M. Maleki, J. Cugnoni, J. Botsis, Acta Mater. 61 (1), (2013).

    Google Scholar 

  31. Monte Carlo simulation of electron trajectory in solids (Casino); http://www.gel.usherbrooke.ca/casino/index.html.

  32. DTSA-II; http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html.

  33. P. Burdet, J. Vannod, A. Hessler-Wyser, M. Rappaz, M. Cantoni, Acta Mater. 61 (8), 3090 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cantoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantoni, M., Holzer, L. Advances in 3D focused ion beam tomography. MRS Bulletin 39, 354–360 (2014). https://doi.org/10.1557/mrs.2014.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.54

Navigation