Skip to main content

Advertisement

Log in

Stabilizing the surface of lithium metal

  • Lithium Batteries and Beyond
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The success of high capacity energy storage systems based on lithium (Li) batteries relies on the realization of the promise of Li-metal anodes. Li metal has many advantageous properties, including an extremely high theoretical specific capacity (3860 mAh g–1), the lowest electrochemical potential (–3.040 V versus standard hydrogen electrode), and low density (0.59 g cm–3), which, all together, make it a very desirable electrode for energy storage devices. However, while primary Li batteries are used for numerous commercial applications, rechargeable Li-metal batteries that utilize Li-metal anodes have not been as successful. This article discusses the properties of Li metal in the absence of surface stabilization, as well as three different approaches currently under investigation for stabilizing the surface of Li metal to control its reactivity within the electrochemical environment of a Li-based battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Angew. Chem. Int. Ed. Engl. 52, 13186 (2013).

    Google Scholar 

  2. D. Bresser, S. Passerini, B. Scrosati, Chem. Commun. 49, 10545 (2013).

    Google Scholar 

  3. A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, J. Am. Chem. Soc. 134, 4505 (2012).

    Google Scholar 

  4. C.P. Yang, S. Xin, Y.X. Yin, H. Ye, J. Zhang, Y.G. Guo, Angew. Chem. Int. Ed. Engl. 52, 8363 (2013).

    Google Scholar 

  5. M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, J. Am. Chem. Soc. 135, 494 (2013).

    Google Scholar 

  6. J. Christensen, P. Albertus, R.S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 159, R1 (2012).

    Google Scholar 

  7. M.S. Whittingham, Proc. IEEE 100, 1518 (2012).

    Google Scholar 

  8. D. Aurbach, Y. Cohen, J. Electrochem. Soc. 143, 3525 (1996).

    Google Scholar 

  9. K. Takeuchi, A.C. Marschilok, S.M. Davis, R.A. Leising, E. Takeuchi, Coord. Chem. Rev. 219–221, 283 (2001).

    Google Scholar 

  10. D. Aurbach, I. Weissman, H. Yamin, E. Elster, J. Electrochem. Soc. 145, 1421 (1998).

    Google Scholar 

  11. R.R. Chianelli, J. Cryst. Growth 34, 239 (1976).

    Google Scholar 

  12. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 7, 513 (2014).

    Google Scholar 

  13. D. Aurbach, J. Power Sources 89, 206 (2000).

    Google Scholar 

  14. E. Zinigrad, E. Levi, H. Teller, G. Salitra, D. Aurbach, P. Dan, J. Electrochem. Soc. 151, A111 (2004).

    Google Scholar 

  15. M. Wu, Z. Wen, Y. Liu, X. Wang, L. Huang, J. Power Sources 196, 8091 (2011).

    Google Scholar 

  16. M. Ishikawa, S. Machino, M. Morita, Electrochemistry 67, 1200 (1999).

    Google Scholar 

  17. C.M. López, J.T. Vaughey, D.W. Dees, J. Electrochem. Soc. 156, A726 (2009).

    Google Scholar 

  18. L.J. Rendek, G.S. Chottiner, D.A. Scherson, J. Electrochem. Soc. 149, E408 (2002).

    Google Scholar 

  19. L.J. Rendek, G.S. Chottiner, D.A. Scherson, J. Electrochem. Soc. 150, A326 (2003).

    Google Scholar 

  20. L.J. Rendek, G.S. Chottiner, D.A. Scherson, Electrochem. Solid State Lett. 5, A77 (2002).

    Google Scholar 

  21. L.F. Li, D.A. Totir, Y. Gofer, K. Wang, G.S. Chottiner, D.A. Scherson, J. Electrochem. Soc. 146, 2616 (1999).

    Google Scholar 

  22. T. Hirai, I. Yoshimatsu, J. Yamaki, J. Electrochem. Soc. 141, 611 (1994).

    Google Scholar 

  23. M.J. Schmid, K.R. Bickel, P. Novak, R. Schuster, Angew. Chem. Int. Ed. Engl. 52, 13233 (2013).

    Google Scholar 

  24. C.M. López, J.T. Vaughey, D.W. Dees, J. Electrochem. Soc. 159, A873 (2012).

    Google Scholar 

  25. M.A. Vorotyntsev, M.D. Levi, A. Schechter, D. Aurbach, J. Phys. Chem. B 105, 188 (2001).

    Google Scholar 

  26. K. Nishikawa, Y. Fukunaka, T. Sakka, YH. Ogata, J. Selman, J. Electrochem. Soc. 154, A943 (2007).

    Google Scholar 

  27. Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, J. Am. Chem. Soc. 123, 11708 (2001).

    Google Scholar 

  28. D. Aurbach, E. Zinigrad, H. Teller, P. Dan, J. Electrochem. Soc. 147, 1274 (2000).

    Google Scholar 

  29. J.O. Besenhard, J. Gürtler, P. Komenda, A. Paxinos, J. Power Sources 20, 253 (1987).

    Google Scholar 

  30. D. Aurbach, I. Weissman, A. Zaban, O. Chusid, Electrochim. Acta 39, 51 (1994).

    Google Scholar 

  31. K. Kanamura, H. Tamura, S. Shiraishi, Z.-I. Takehara, J. Electroanal. Chem. 394, 49 (1995).

    Google Scholar 

  32. J.-I. Yamaki, S.-I. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto, M. Arakawa, J. Power Sources 74, 219 (1998).

    Google Scholar 

  33. S. Shiraishi, K. Kanamura, Z.-I. Takehara, J. Electrochem. Soc. 146, 1633 (1999).

    Google Scholar 

  34. H. Ota, X. Wang, E. Yasukawa, J. Electrochem. Soc. 151, A427 (2004).

    Google Scholar 

  35. L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J.M. Tarascon, Electrochem. Commun.8, 1639 (2006).

  36. H. Yoon, PC Howlett, A.S. Best, M. Forsyth, D.R. MacFarlane, J. Electrochem. Soc. 160, A1629 (2013).

    Google Scholar 

  37. J.K. Stark, Y. Ding, PA. Kohl, J. Electrochem. Soc. 158, A1100 (2011).

    Google Scholar 

  38. D. Aurbach, O. Youngman, Y. Gofer, A. Meitav, Electrochim. Acta 35, 625 (1990).

    Google Scholar 

  39. D. Aurbach, O. Youngman, P. Dan, Electrochim. Acta 35, 639 (1990).

    Google Scholar 

  40. K. Naoi, M. Mori, Y. Naruoka, W.M. Lamanna, R. Atanasoski, J. Electrochem. Soc. 146, 462 (1999).

    Google Scholar 

  41. L. Yang, C. Smith, C. Patrissi, C.R. Schumacher, B.L. Lucht, J. Power Sources 185, 1359 (2008).

    Google Scholar 

  42. T. Fujieda, N. Yamamoto, K. Saito, T. Ishibashi, M. Honjo, S. Koike N. Wakabayashi, S. Higuchi, J. Power Sources 52, 197 (1994).

    Google Scholar 

  43. T. Osaka, T. Momma, Y. Matsumoto, Y. Uchida, J. Electrochem. Soc. 144, 1709 (1997).

    Google Scholar 

  44. H. Ota, K. Shima, M. Ue, J.-I. Yamaki, Electrochim. Acta 49, 565 (2004).

    Google Scholar 

  45. Y.M. Lee, J.E. Seo, Y.-G. Lee, S.H. Lee, K.Y Cho, J.-K. Park, Electrochem. Solid State Lett. 10, A216 (2007).

    Google Scholar 

  46. S. Yoon, J. Lee, S.-O. Kim, H.-J. Sohn, Electrochim. Acta 53, 2501 (2008).

    Google Scholar 

  47. C. Liebenow, K. Luhder, J. Appl. Electrochem. 26, 689 (1996).

    Google Scholar 

  48. J. Christensen, J. Newman, J. Electrochem. Soc. 151, A1977 (2004).

    Google Scholar 

  49. R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F Hollenkamp, C.P. Grey, Nat. Mater. 9, 504 (2010).

    Google Scholar 

  50. F. Marchionni, K. Star, E. Menke, T. Buffeteau, L. Servant, B. Dunn, F. Wudl, Langmuir 23, 11597 (2007).

    Google Scholar 

  51. R.S. Thompson, D.J. Schroeder, C.M. López, S. Neuhold, J.T. Vaughey, Electrochem. Commun. 13, 1369 (2011).

    Google Scholar 

  52. S. Neuhold, D.J. Schroeder, J.T. Vaughey J. Power Sources 206, 295 (2012).

  53. G.A. Umeda, E. Menke, M. Richard, K.L. Stamm, F. Wudl, B. Dunn, J. Mater. Chem.21, 1593 (2010).

  54. D. Fei, H. Xinguo, L. Yuwen, Journal of Wuhan University of Technology-Mater Sci. Ed. 22, 494 (2007).

    Google Scholar 

  55. B. Key, D.J. Schroeder, B.J. Ingram, J.T. Vaughey, Chem. Mater., 24 287 (2012).

  56. A.A. Hubaud, D.J. Schroeder, B. Key, B.J. Ingram, F. Dogan, J.T. Vaughey, J. Mater. Chem. A 1, 8813 (2013).

    Google Scholar 

  57. F. Ding, W. Xu, G.L. Graff, J. Zhang, M. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. 135, 4450 (2013).

    Google Scholar 

  58. C.R. Jarvis, M.J. Lain, Y. Gao, M. Yakovleva, J. Power Sources 146, 331 (2005).

    Google Scholar 

  59. C.R. Jarvis, M.J. Lain, M.V Yakovleva, Y. Gao, J. Power Sources 162, 800 (2006).

    Google Scholar 

  60. B. Xiang, L. Wang, G. Liu, A.M. Minor, J. Electrochem. Soc. 160, A415 (2013).

    Google Scholar 

  61. Y. Li, B. Fitch, Electrochem. Commun. 13, 664 (2011).

    Google Scholar 

  62. L. Wang, Y. Fu, VS. Battaglia, G. Liu, RSC Adv. 3, 15022 (2013).

    Google Scholar 

  63. Z. Wang, Y. Fu, Z. Zhang, S. Yuan, K. Amine, VS. Battaglia, G. Liu, J. Power Sources 260, 57 (2014).

    Google Scholar 

  64. M. Wachtler, J.O. Besenhard, M. Winter, J. Power Sources 94, 189 (2001).

    Google Scholar 

  65. M.W. Forney, M.J. Ganter, J.W. Staub, R.D. Ridgley, B.J. Landi, Nano Lett. 13, 4158 (2013).

    Google Scholar 

Download references

Acknowledgments

J.T.V. and G.L. were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of the US Department of Energy (DOE), under the Batteries for Advanced Transportation Technologies (BATT) Program. J.G.Z. was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of the US Department of Energy (DOE), and the Laboratory Directed Research and Development fund of PNNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Vaughey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaughey, J.T., Liu, G. & Zhang, JG. Stabilizing the surface of lithium metal. MRS Bulletin 39, 429–435 (2014). https://doi.org/10.1557/mrs.2014.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.88

Navigation