Skip to main content
Log in

Additive manufacturing of Trabecular Titanium orthopedic implants

  • 3D printing of biomaterials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The long-term success of an orthopedic implant largely depends on the extent of its osseointegration in the surrounding bone. During recent decades, there have been several attempts to develop porous structures and coatings in order to maximize the bone ingrowth on prosthesis surfaces. Innovative additive manufacturing technologies, such as electron beam melting (EBM), which are based upon building components by adding layers of material rather than by removing material from a raw shape, can provide a breakthrough solution, both to overcome the major limitations of the actual technologies and to significantly enhance the performance of porous scaffolds. This article reviews the latest developments in EBM technology applied to the preparation of highly biocompatible porous materials such as Trabecular Titanium and the production of orthopedic prostheses with enhanced characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R.J. Friedman, J. Black, J.O. Galante, J.J. Jacobs, H.B. Skinner, J. Bone Joint Surg. Am. 75 (7), 1086 (1993).

    Article  Google Scholar 

  2. K. Anselme, Biomaterials 21 (7), 667 (2000).

    Article  CAS  Google Scholar 

  3. P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, Acta Biomater. 4 (5), 1536 (2008).

    Article  CAS  Google Scholar 

  4. M. Baleani, M. Viceconti, A. Toni, Artif. Organs 24 (4), 296 (2000).

    Article  CAS  Google Scholar 

  5. A. Christensen, A. Lippincott, R. Kircher, Proc. Conf. MEDDEV, Palm Desert, 2007, (ASM International ed., Materials Park, OH) p. 129.

  6. V.M. Goldberg, Clin. Orthop. Relat. Res. 319, 122 (1995).

    Google Scholar 

  7. K.H. Frosch, F. Barvencik, V. Viereck, C.H. Lohmann, K. Dresing, J. Breme, E. Brunner, K.M. Sturmen, J. Biomed. Mater. Res. 68A (2), 325 (2004).

    Article  CAS  Google Scholar 

  8. V. Karageorgiou, D. Kaplan, Biomaterials 26, 2775 (2005).

    Article  Google Scholar 

  9. S.D. Cook, K.A. Thomas, J.F. Kay, Clin. Orthop. 265, 280 (1991).

    Google Scholar 

  10. X. Li, C. Wang, W. Zhang, Y. Li, Mater. Lett. 63 (3–4), 403 (2009).

    Article  CAS  Google Scholar 

  11. P.M. Bonutti, R. Pivec, K. Issa, B.H. Kapadia, S. Banerjee, S.F. Harwin, M.A. Mont, T.W. Bauer, Orthopedics 36 (8), 417 (2013).

    Google Scholar 

  12. H.R. Bloch, S. Burelli, D. Devine, D. Arens, Proc. Conf. 13th EFORT, (Berlin, 2012), p. 85.

  13. M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, A.F. Schilling, Appl. Mater. 3, 2947 (2010).

    CAS  Google Scholar 

  14. O. Cansizoglu, D. Harrysson, D. Cormier, H. West, T. Mahale, Mater. Sci. Eng. 492 (1–2), 468 (2008).

    Article  Google Scholar 

  15. J.C.S. Pires, A.F.B. Braga, P.R. Mei, Sol. Energy Mater. Sol. Cells 79 (3), 347 (2003).

    Article  CAS  Google Scholar 

  16. A. Hershcovitch, Nucl. Instrum. Methods Phys. Res. B 241 (1–4), 854 (2005).

    Article  CAS  Google Scholar 

  17. Q.F. Guan, H. Zou, A.M. Wu, S.Z. Hao, J.X. Zou, Y. Qin, C. Dong, Q.Y. Zhang, Surf. Coat. Technol. 196 (1–3), 145 (2005).

    Article  CAS  Google Scholar 

  18. S. Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology (Prentice Hall, Upper Saddle River, NJ, 2009).

    Google Scholar 

  19. M. Niinomi, Mater. Sci. Eng. 243 (1–2), 231 (1998).

    Article  Google Scholar 

  20. S. Schneider, I. Egry, I. Seyhan, Int. J. Thermophys. 23 (5), 1241 (2002).

    Article  CAS  Google Scholar 

  21. P. Dalla Pria, M. Pressacco, E. Veronesi, Sphera Med. J. 7, 4 (2008).

    Google Scholar 

  22. E. Marin, S. Fusi, M. Pressacco, L. Paussa, L. Fedrizzi, J. Mech. Behav. Biomed. Mater. 3 (5), 790 (2010).

    Google Scholar 

  23. E. Marin, M. Pressacco, S. Fusi, A. Lanzutti, S. Turchet, L. Fedrizzi, Mater. Sci. Eng. C 33, 2648 (2013).

    Article  CAS  Google Scholar 

  24. D. Devine, D. Arens, S. Burelli, H.R. Bloch, L. Boure, J. Bone Joint Surg. 94B, 201 (2010).

    Google Scholar 

  25. B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Biomaterials 27 (27), 4671 (2006).

    Article  CAS  Google Scholar 

  26. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, J. Biomed. Mater. Res. 58 (2), 180 (2001).

    Article  CAS  Google Scholar 

  27. R.R. Boyer, Metals Handbook 9th ed. ( ASM International, Materials Park, OH, 1985).

    Google Scholar 

  28. G.R. Yoder, L.A. Cooley, T.W. Crooker, Eng. Fract. Mech. 11 (4), 805 (1979).

    Article  CAS  Google Scholar 

  29. G.R. Yoder, D. Eylon, Metall. Mater. Trans. A 10, 1808 (1979).

    Article  Google Scholar 

  30. S.Y. Sung, Y.J. Kim, Mater. Sci. Eng. A 405 (1–2), 173 (2005).

    Article  Google Scholar 

  31. ISO 13314, International Standardization Organization, 2011.

  32. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams—A Design Guide (Butterworth-Heinemann, Oxford, UK, 2000).

    Google Scholar 

  33. J.J. Callaghan, A.G. Rosenberg, H.E. Rubash, in The Adult Hip 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2007), vol. 1.

    Google Scholar 

  34. ASTM F1147, ASTM International, 2005.

  35. L. Gilmour, B. Jones, J. Dickinson, Proc. Conf. MEDDEV, Memphis, 2009, (ASM International ed., Materials Park, OH), pp. 129–132.

  36. G. Gastaldi, A. Asti, M.F. Scaffino, L. Visai, E. Saino, A.M. Cometa, F. Benazzo, J. Biomed. Mater. Res. A 94 (3), 790 (2010).

    Google Scholar 

  37. A. Asti, G. Gastaldi, R. Dorati, E. Saino, B. Conti, L. Visai, F. Benazzo, Bioinorg. Chem. Appl. 83, 176 (2010).

    Google Scholar 

  38. V. Sollazzo, A. Plamieri, L. Massari, F. Clarinci, J. Orthop. Traumatol. 13 (1), 107 (2012).

    Google Scholar 

  39. A. Bistolfi, L. Ravera, E. Graziano, G. Collo, D. Malino, A. Giordano, G. Massazza, Minerva Orthop. Traumatol. 65, 199 (2014).

    Google Scholar 

  40. L. Perticarini, L. Piovani, S.M.P. Rossi, A. Combi, A. Padolino, F. Benazzo, J. Orthop. Traumatol. 12 (Suppl. 1), 147 (2011).

    Google Scholar 

  41. L. Perticarini, M. Ghiara, T. Lamberti, F.M. Benazzo, Bone Joint J. 95B (Suppl. 34), 479 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Regis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regis, M., Marin, E., Fedrizzi, L. et al. Additive manufacturing of Trabecular Titanium orthopedic implants. MRS Bulletin 40, 137–144 (2015). https://doi.org/10.1557/mrs.2015.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.1

Navigation