Skip to main content
Log in

Additive manufacturing of Ni-based superalloys: The outstanding issues

  • Metallic Materials for 3D Printing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

There is increasing interest in the use of additive manufacturing (AM) for Ni-based superalloys due to their various applications in the aerospace and power-generation sectors. Ni-based superalloys are known to have a complex chemistry, with over a dozen alloying elements in most alloys, enabling them to achieve outstanding high-temperature mechanical performance as well as oxidation resistance when processed using conventional routes (e.g., casting and forging). Nonetheless, this complex chemistry results in the formation of various phases that could affect their processability using AM, resulting in cracking. Furthermore, due to the directional solidification and rapid cooling associated with AM processes, the alloys experience significant anisotropy due to the epitaxially grown microstructure, as well as the residual stresses that can sometimes be difficult to mitigate using thermal postprocessing techniques. This article highlights the outstanding issues in Ni-based superalloys AM processing, with special emphasis on defect formation mechanisms, process optimization, and residual stress development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, 2nd ed. (ASM International, Materials Park, OH, 2002).

    Google Scholar 

  2. M. Durand-Charre, The Microstructure of Superalloys (Gordon and Breach Science Publishers, Amsterdam, 1997).

    Google Scholar 

  3. R. Schafrik, R. Sprague, Key Eng. Mater. 380, 113 (2008).

    Google Scholar 

  4. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006).

    Google Scholar 

  5. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Joining 9, 13 (2004).

    Google Scholar 

  6. G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, J.J. McGee, Weld. J. 87, 31 (2008).

    Google Scholar 

  7. E.A. Ott, J. Groh, H. Sizek, Proc. Sixth Int. Special Emphasis Symp. Superalloys 718, 625, 706 and Derivatives, E.A. Loria, Ed. (The Minerals, Metals and Materials Society, Warrendale, PA, 2006), pp. 35–46.

    Google Scholar 

  8. N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94, 59 (2015).

    Google Scholar 

  9. P. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001).

    Google Scholar 

  10. P. Mercelis, J.-P. Kruth, Rapid Prototyp. J. 12, 254 (2006).

    Google Scholar 

  11. P. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 366 (2001).

    Google Scholar 

  12. A. Pinkerton, J. Shackleton, R. Moat, L. Li, P. Withers, M. Preuss, J. Allen, P. Hilton, R. Folwell, Proc. 24th Int. Congr. Applic. Lasers Electro-optics (ICALEO) (Laser Institute of America, Orlando, FL, 2005), pp. 601–610.

    Google Scholar 

  13. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Google Scholar 

  14. B. Vrancken, R. Wauthlé, J.-P. Kruth, J. Van Humbeeck, Proc. Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2013), pp. 1–15.

    Google Scholar 

  15. R. Moat, A. Pinkerton, L. Li, P. Withers, M. Preuss, Mater. Sci. Eng. A 528, 2288 (2011).

    Google Scholar 

  16. M. Zhong, H. Sun, W. Liu, X. Zhu, J. He, Scr. Mater. 53, 159 (2005).

    Google Scholar 

  17. L.L. Parimi, M.M. Attallah, J. Gebelin, R.C. Reed, Proc. Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, Eds. (Wiley, New York, 2012), pp. 509–519.

    Google Scholar 

  18. N. Klingbeil, J. Beuth, R. Chin, C. Amon, Int. J. Mech. Sci. 44, 57 (2002).

    Google Scholar 

  19. P. Prabhakar, W. Sames, R. Dehoff, S. Babu, Addit. Manuf. 7, 83 (2015).

    Google Scholar 

  20. C. Casavola, S. Campanelli, C. Pappalettere, J. Strain Anal. Eng. Des. 44, 93 (2009).

    Google Scholar 

  21. M. Griffith, M. Schlienger, L. Harwell, M. Oliver, M. Baldwin, M. Ensz, M. Essien, J. Brooks, C. Robino, E.J. Smugeresky, Mater. Des. 20, 107 (1999).

    Google Scholar 

  22. F. Neugebauer, N. Keller, X. Hongxiao, C. Kober, V. Ploshikhin, Proc. Fraunhofer Direct Digital Manuf. Conf. (Fraunhofer Verlag, Stuttgart, Germany, 2014).

    Google Scholar 

  23. P. Rangaswamy, M. Griffith, M. Prime, T. Holden, R. Rogge, J. Edwards, R. Sebring, Mater. Sci. Eng. A 399, 72 (2005).

    Google Scholar 

  24. A. Vasinonta, J.L. Beuth, M.L. Griffith, J. Manuf. Sci. Eng. 123, 615 (2001).

    Google Scholar 

  25. P. Aggarangsi, J.L. Beuth, M. Griffith, Proc. Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2003), pp. 196–207.

    Google Scholar 

  26. J. Beuth, N. Klingbeil, JOM 53, 36 (2001).

    Google Scholar 

  27. K. Dai, L. Shaw, Rapid Prototyp. J. 8, 270 (2002).

    Google Scholar 

  28. L. Wang, S.D. Felicelli, P. Pratt, Mater. Sci. Eng. A 496, 234 (2008).

    Google Scholar 

  29. M. Labudovic, D. Hu, R. Kovacevic, J. Mater. Sci. 38, 35 (2003).

    Google Scholar 

  30. M.F. Zaeh, G. Branner, Prod. Eng. 4, 35 (2010).

    Google Scholar 

  31. R. Moat, A.J. Pinkerton, D.J. Hughes, L. Li, P.J. Withers, M. Preuss, “Stress Distributions in Multilayer Laser Deposited Waspaloy Parts Measured Using Neutron Diffraction, Proc. 25th Int. Congr. on Applic. Lasers Electro-optics (ICALEO) (Laser Institute of America, Orlando, FL, 2007).

    Google Scholar 

  32. X. Song, M. Xie, F. Hofmann, T. Illston, T. Connolley, C. Reinhard, R. Atwood, L. Connor, M. Drakopoulos, L. Frampton, Int. J. Mater. Form. 8, 245 (2015).

    Google Scholar 

  33. A.S.C. D’Oliveira, P.S.C. da Silva, R.M. Vilar, Surf. Coat. Technol. 153, 203 (2002).

    Google Scholar 

  34. S. Zekovic, R. Dwivedi, R. Kovacevic, Proc. Solid Freeform Fabr. (The University of Texas at Austin, Austin, TX, 2005).

    Google Scholar 

  35. N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8, 12 (2015).

    Google Scholar 

  36. A. Gåård, P. Krakhmalev, J. Bergström, J. Alloys Compd. 421, 166 (2006).

    Google Scholar 

  37. A. Nickel, D. Barnett, F. Prinz, Mater. Sci. Eng. A 317, 59 (2001).

    Google Scholar 

  38. S. Finnie, W. Cheng, I. Finnie, J.-M. Drezet, M. Gremaud, J. Eng. Mater. Technol. 125, 302 (2003).

    Google Scholar 

  39. R.A. Kupkovits, R.W. Neu, Int. J. Fatigue 32, 1330 (2010).

    Google Scholar 

  40. L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Mater. Sci. Technol. 32, 657 (2015).

    Google Scholar 

  41. H. Qi, M. Azer, A. Ritter, Metall. Mater. Trans. A 40, 2410 (2009).

    Google Scholar 

  42. L.N. Carter, K. Essa, M.M. Attallah, Rapid Prototyp. J. 21, 423 (2015).

    Google Scholar 

  43. M. Ramsperger, R. Singer, C. Körner, Metall. Mater. Trans. A 47, 1469 (2016).

    Google Scholar 

  44. F. Wang, X. Wu, D. Clark, Mater. Sci Technol. 21, 344 (2011).

    Google Scholar 

  45. Q. Jia, D. Gu, J. Alloys Compd. 585, 713 (2014).

    Google Scholar 

  46. K.A. Mumtaz, P. Erasenthiran, N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008).

    Google Scholar 

  47. S. Das, T.P. Fuesting, G. Danyo, L.E. Brown, J.J. Beaman, D.L. Bourell, Mater. Des. 21, 63 (2000).

    Google Scholar 

  48. P.S. Wei, S.C. Kou, in Advances in Multiphase Flow and Heat Transfer, L. Cheng, Ed. (Bentham Science Publishers, online, 2009), vol. 1, pp. 213–232.

    Google Scholar 

  49. M. Cloots, P.J. Uggowitzer, K. Wegener, Mater. Des. 89, 770 (2016).

    Google Scholar 

  50. H.E. Helmer, C. Körner, R.F. Singer, J. Mater. Res. 29, 1987 (2014).

    Google Scholar 

  51. L. Carter, M. Attallah, R. Reed, Proc. Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E Montero, P.D. Portella, J. Telesman, Eds. (Wiley, New York, 2012) pp. 577–586.

    Google Scholar 

  52. C. Cross, in Hot Cracking Phenomena in Welds, T. Böllinghaus, H. Herold, Eds. (Springer, Berlin, 2005), chap. 1, pp. 3–18.

    Google Scholar 

  53. D. Dye, O. Hunziker, R.C. Reed, Acta Mater. 49, 683 (2001).

    Google Scholar 

  54. M.T. Rush, P.A. Colegrove, Z. Zhang, D. Broad, J. Mater. Process. Technol. 212, 188 (2012).

    Google Scholar 

  55. Y.-L. Tsai, S.-F. Wang, H.-Y. Bor, Y.-F. Hsu, Mater. Sci. Eng. A 607, 294 (2014).

    Google Scholar 

  56. D. Heydari, A.S. Fard, A. Bakhshi, J.M. Drezet, J. Mater. Process. Technol. 214, 681 (2013).

    Google Scholar 

  57. L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, J. Alloys Compd. 615, 338 (2014).

    Google Scholar 

  58. G. Young, T. Capobianco, M. Penik, B. Morris, J. McGee, Weld. J. 87, 31 (2008).

    Google Scholar 

  59. M.L. Collins, J.C. Lippold, Weld. J. 82, 288S (2003).

    Google Scholar 

  60. M.R. Collins, A. Ramirez, J.C. Lippold, Weld. J. 82 (12), 348S (2003).

    Google Scholar 

  61. M. Collins, A. Ramirez, J. Lippold, Weld. J. 83, 39 (2004).

    Google Scholar 

  62. J. Lippold, Welding Metallurgy and Weldability (Wiley, Hoboken, NJ, 2015).

    Google Scholar 

  63. G. Bi, A. Gasser, Phys. Procedia 12, 402 (2011).

    Google Scholar 

  64. S. Das, Adv. Eng. Mater. 5, 701 (2003).

    Google Scholar 

  65. L.L. Parimi, G. Ravi, D. Clark, M.M. Attallah, Mater. Charact. 89, 102 (2014).

    Google Scholar 

  66. F. Liu., X. Lin, G.L. Yang, M.H. Song, J. Chen, W.D. Huang, Opt. Laser Technol. 43, 208 (2011).

    Google Scholar 

  67. T. Vilaro, C. Colin, J.D. Bartout, L. Naze, M. Sennour, Mater. Sci. Eng. A 534, 446 (2012).

    Google Scholar 

  68. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Mater. 60, 2229 (2012).

    Google Scholar 

  69. P.L. Blackwell, J. Mater. Process. Technol. 170, 240 (2005).

    Google Scholar 

  70. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639, 647 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moataz M. Attallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attallah, M.M., Jennings, R., Wang, X. et al. Additive manufacturing of Ni-based superalloys: The outstanding issues. MRS Bulletin 41, 758–764 (2016). https://doi.org/10.1557/mrs.2016.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.211

Navigation