Skip to main content
Log in

Fracture, fatigue, and creep of nanotwinned metals

  • Twinning in Metallic Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As a relatively new class of hierarchically structured materials, nanotwinned (NT) metals exhibit an exceptional combination of high strength, good ductility, large fracture toughness, remarkable fatigue resistance, and creep stability. This article reviews current studies on fracture, fatigue, and creep of NT metals, with an emphasis on the fundamental deformation and failure mechanisms. We focus on the complex interactions among cracks, dislocations, and twin boundaries, the influence of microstructure, twin size, and twinning/detwinning on damage evolution, and the contribution of nanoscale twins to fatigue and creep under indentation and irradiation conditions. The article also includes critical discussions on the effects of twin thickness and grain size on the fracture toughness, fatigue resistance, and creep stability of NT metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  2. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009).

  3. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009).

  4. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, X. Zhang, Appl. Phys. Lett. 93, 083108 (2008).

  5. D. Bufford, H. Wang, X. Zhang, Acta Mater. 59, 93 (2011).

  6. A.M. Hodge, Y.M. Wang, T.W. Barbee Jr., Scr. Mater. 59, 163 (2008).

  7. H. Idrissi, B. Wang, M.S. Colla, J.P. Raskin, D. Schryvers, T. Pardoen, Adv. Mater. 23, 2119 (2011).

  8. D. Jang, C. Cai, J.R. Greer, Nano Lett. 11, 1743 (2011).

  9. D. Jang, X. Li, H. Gao, J.R. Greer, Nat. Nanotechnol. 12, 4605 (2012).

  10. E.W. Qin, L. Lu, N.R. Tao, J. Tan, K. Lu, Acta Mater. 57, 6215 (2009).

  11. E.W. Qin, L. Lu, N.R. Tao, K. Lu, Scr. Mater. 60, 539 (2009).

  12. A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Acta Mater. 59, 2437 (2011).

  13. C.J. Shute, B.D. Myer, S. Xie, S.Y. Li, T.W. Barbee, A.M. Hodge, J.R. Weertman, Acta Mater. 59, 4569 (2011).

  14. J. Bezares, S. Jiao, Y. Liu, D. Bufford, L. Lu, X. Zhang, Y. Kulkarni, R.J. Asaro, Acta Mater. 60, 4623 (2012).

  15. H. Kou, J. Lu, Y. Li, Adv. Mater. 26, 5518 (2014).

  16. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Nat. Commun. 5, 3580 (2014).

  17. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Res. 44, 329 (2014).

  18. S. Mahajan, Scr. Mater. 68, 95 (2013).

  19. R.J. Asaro, S. Suresh, Acta Mater. 53, 3369 (2005).

  20. M. Dao, L. Lu, Y.F. Shen, S. Suresh, Acta Mater. 54, 5421 (2006).

  21. T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Natl. Acad. Sci. U.S.A. 104 ,3031 (2007).

  22. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464, 877 (2010).

  23. A. Stukowski, K. Albe, D. Farkas, Phys. Rev. B Condens. Matter 82, 224103 (2010).

  24. Y. Kulkarni, R.J. Asaro, Acta Mater. 57, 4835 (2009).

  25. Y. Zhang, H. Huang, Nanoscale Res. Lett. 4, 34 (2009).

  26. C. Deng, F. Sansoz, Nano Lett. 9, 1517 (2009).

  27. L. Zhu, H. Ruan, X. Li, M. Dao, H. Gao, J. Lu, Acta Mater. 59, 5544 (2011).

  28. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, L. Lu, Acta Mater. 61, 5217 (2013).

  29. F. Yuan, X. Wu, J. Appl. Phys. 113, 203516 (2013).

  30. F. Yuan, P. Cheng, X. Wu, Philos. Mag. Lett. 94, 514 (2014).

  31. H. Zhou, X. Li, S. Qu, W.Yang, H. Gao, Nano Lett. 14, 5075 (2014).

  32. P. Gu, M. Dao, S. Suresh, Acta Mater. 67, 409 (2014).

  33. N. Lu, K. Du, L. Lu, H.Q. Ye, Nat. Commun. 6, 7648 (2015).

  34. T. Zhu, H.J. Gao, Scr. Mater. 66, 843 (2012).

  35. X. Li, H. Gao, Nano and Cell Mechanics: Fundamentals and Frontiers, H. Espinosa, G. Bao, Eds. (Wiley, Chichester, 2013), p. 129.

  36. Y. Cheng, Z.H. Jin, Y.W.Zhang, H. Gao, Acta Mater. 58, 2293 (2010).

  37. M. Seita, J.P. Hanson, S. Gradecak, M.J. Demkowicz, Nat. Commun. 6, 6164 (2015).

  38. S. Kim, X. Li, H. Gao, S. Kumar, Acta Mater. 60, 2959 (2012).

  39. Z. Shan, L. Lu, A.M. Minor, E.A. Stach, S.X. Mao, JOM 60, 71 (2008).

  40. Z. Zeng, X. Li, L. Lu, T. Zhu, Acta Mater. 98, 313 (2015).

  41. A. Kobler, A.M. Hodge, H. Hahn, C. Kübel, Appl. Phys. Lett. 106, 261902 (2015).

  42. J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, S.X. Mao, Nat. Commun. 4, 1742 (2013).

  43. F.P. Yuan, X.L. Wu, Philos. Mag. 93, 3248 (2013).

  44. J. Li, Y. Ni, A.K. Soh, X.L. Wu, Mater. Res. Lett. 3, 190 (2015).

  45. L. Liu, J. Wang, S.K. Gong, S.X. Mao, Sci. Rep. 4, 4397 (2014).

  46. H.Zhou, H. Gao, J. Appl. Mech. 82, 071015 (2015).

  47. B.G. Yoo, S.T. Bolesb, Y. Liu, X. Zhang, R. Schwaiger, C. Eberl, O. Kraft, Acta Mater. 81, 184 (2014).

  48. X. Zhou, X. Li, C. Chen, Acta Mater. 99, 77 (2015).

  49. P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, Int. J. Fatigue 68, 277 (2014).

  50. P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, Int. J. Fatigue 68, 292 (2014).

  51. S. Qu, P.Zhang, S.D. Wu, Q.S.Zang,Z.F.Zhang, Scr. Mater. 59, 1131 (2008).

  52. L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, Z.F. Zhang, Nat. Commun. 5, 3536 (2014).

  53. C.A. Stein, A. Cerrone, T. Ozturka, S. Lee, P. Kenesei, H. Tucker, R. Pokharel, J. Lind, C. Hefferan, R.M. Suter, A.R. Ingraffea, A.D. Rollett, Curr. Opin. Solid State Mater. Sci. 18, 244 (2014).

  54. K. Zhang, J.R. Weertman, J.A. Eastman, Appl. Phys. Lett. 85, 5197 (2004).

  55. S. Jiao, Y. Kulkarni, Comput. Mater. Sci. 110, 254 (2015).

  56. Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M.A. Kirk, J. Wang, X. Zhang, Nat. Commun. 6, 7036 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.L. and H.G. thank Ke Lu, Lei Lu, and Yujie Wei from the Chinese Academy of Sciences for stimulating discussions, and acknowledge financial support by NSF through Award CMMI-1161749 and the MRSEC Program through Award DMR-0520651 at Brown University. X.L. also acknowledges support by the NSFC Grants 11372152 and 51420105001. M.D. acknowledges support from Singapore MIT Alliance (SMA). A.M.H acknowledges NSF Award DMR-0955338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dao, M., Eberl, C. et al. Fracture, fatigue, and creep of nanotwinned metals. MRS Bulletin 41, 298–304 (2016). https://doi.org/10.1557/mrs.2016.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.65

Navigation