Skip to main content
Log in

Three-dimensional printing with sacrificial materials for soft matter manufacturing

  • 3D Bioprinting of Organs
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T. Bhattacharjee, S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon, W.G. Sawyer, T.E. Angelini, Sci. Adv. 1, e1500655 (2015).

    Article  Google Scholar 

  2. J.-S. Lee, J.M. Hong, J.W. Jung, J.-H. Shim, J.-H. Oh, D.-W. Cho, Biofabrication 6, 024103 (2014).

    Article  CAS  Google Scholar 

  3. L. Ouyang, C.B. Highley, C.B. Rodell, W. Sun, J.A. Burdick, ACS Biomater. Sci. Eng. 2, 1743 (2016).

    Article  CAS  Google Scholar 

  4. J.-H. Shim, J.-S. Lee, J.Y. Kim, D.-W. Cho, J. Micromech. Microeng. 22, 085014 (2012).

    Article  CAS  Google Scholar 

  5. L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A.L. Cristino, G. Barabaschi, D. Demarchi, M.R. Dokmeci, Y. Yang, Lab Chip 14, 2202 (2014).

    Article  CAS  Google Scholar 

  6. H.-W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, Nat. Biotechnol. 34, 312 (2016).

    Article  CAS  Google Scholar 

  7. T.J. Hinton, A. Hudson, K. Pusch, A. Lee, A.W. Feinberg, ACS Biomater. Sci. Eng. 2, 1781 (2016).

    Article  CAS  Google Scholar 

  8. J.T. Muth, D.M. Vogt, R.L. Truby, Y. Mengüç, D.B. Kolesky, R.J. Wood, J.A. Lewis, Adv. Mater. 26, 6307 (2014).

    Article  CAS  Google Scholar 

  9. C.S. O’Bryan, T. Bhattacharjee, S. Hart, C.P. Kabb, K.D. Schulze, I. Chilakala, B.S. Sumerlin, W.G. Sawyer, T.E. Angelini, Sci. Adv. 3, e1602800 (2017).

    Article  CAS  Google Scholar 

  10. T. Bhattacharjee, C.J. Gil, S.L. Marshall, J.M. Urueña, C.S. O’Bryan, M. Carstens, B. Keselowsky, G.D. Palmer, S. Ghivizzani, C.P. Gibbs, ACS Biomater. Sci. Eng. 2, 1787 (2016).

    Article  CAS  Google Scholar 

  11. F. Pati, J.-H. Shim, J.-S. Lee, D.-W. Cho, Manuf. Lett. 1, 49 (2013).

    Article  CAS  Google Scholar 

  12. C. Xu, W. Chai, Y. Huang, R.R. Markwald, Biotechnol. Bioeng. 109, 3152 (2012).

    Article  CAS  Google Scholar 

  13. G. Wood, M. Keech, Biochem. J. 75, 588 (1960).

    Article  CAS  Google Scholar 

  14. Y.-L. Yang, L.J. Kaufman, Biophys. J. 96, 1566 (2009).

    Article  CAS  Google Scholar 

  15. Y.-L. Yang, S. Motte, L.J. Kaufman, Biomaterials 31 5678 (2010).

    Article  CAS  Google Scholar 

  16. P.G. de Gennes, Angew. Chem. Int. Ed. Engl. 31, 842 (1992).

    Article  Google Scholar 

  17. L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector, Soft Matter 5, 1354 (2009).

    Article  CAS  Google Scholar 

  18. Y. Jin, A. Compaan, T. Bhattacharjee, Y. Huang, Biofabrication 8, 025016 (2016).

    Article  CAS  Google Scholar 

  19. J.N. Hanson Shepherd, S.T. Parker, R.F. Shepherd, M.U. Gillette, J.A. Lewis, R.G. Nuzzo, Adv. Funct. Mater 21, 47 (2011).

    Article  CAS  Google Scholar 

  20. K.A. Homan, D.B. Kolesky, M.A. Skylar-Scott, J. Herrmann, H. Obuobi, A. Moisan, J.A. Lewis, Sci. Rep. 6, 34845 (2016).

    Article  CAS  Google Scholar 

  21. D.B. Kolesky, R.L. Truby, A. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, Adv. Mater. 26, 3124 (2014).

    Article  CAS  Google Scholar 

  22. C.B. Highley, C.B. Rodell, J.A. Burdick, Adv. Mater. 27, 5075 (2015).

    Article  CAS  Google Scholar 

  23. C.B. Rodell, A.L. Kaminski, J.A. Burdick, Biomacromolecules 14, 4125 (2013).

    Article  CAS  Google Scholar 

  24. J.-P. Habas, E. Pavie, A. Lapp, J. Peyrelasse, J. Rheol. 48, 1 (2004).

    Article  CAS  Google Scholar 

  25. C. Perreur, J.-P. Habas, J. Peyrelasse, J. François, A. Lapp, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 031505 (2001).

    Article  CAS  Google Scholar 

  26. C.J. Dimitriou, R.H. Ewoldt, G.H. McKinley, J. Rheol. 57, 27 (2013).

    Article  CAS  Google Scholar 

  27. K.J. LeBlanc, S.R. Niemi, A.I. Bennett, K.L. Harris, K.D. Schulze, W.G. Sawyer, C. Taylor, T.E. Angelini, ACS Biomater. Sci. Eng. 2, 1796 (2016).

    Article  CAS  Google Scholar 

  28. Standard Specification for Additive Manufacturing File Format (AMF), Version 1.2 (ASTM International, West Conshohocken, PA, 2016).

  29. T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.-J. Shue, M.H. Ramadan, A.R. Hudson, A.W. Feinberg, Sci. Adv. 1, e1500758 (2015).

    Article  CAS  Google Scholar 

  30. R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Biomaterials 23 4437 (2002).

    Article  CAS  Google Scholar 

  31. R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaupt, J. Mater. Sci. 37, 3107 (2002).

    Article  CAS  Google Scholar 

  32. J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu, Nat. Mater. 11, 768 (2012).

    Article  CAS  Google Scholar 

  33. J.S. Miller, PLoS Biol. 12, e1001882 (2014).

    Article  CAS  Google Scholar 

  34. D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Adv. Mater. 17, 395 (2005).

    Article  CAS  Google Scholar 

  35. D. Therriault, S.R. White, J.A. Lewis, Nat. Mater. 2, 265 (2003).

    Article  CAS  Google Scholar 

  36. M. Coutanceau, J.-R. Defaye, Appl. Mech. Rev. 44, 255 (1991).

    Article  Google Scholar 

  37. S. Taneda, J. Phys. Soc. Jpn. 11, 1104 (1956).

    Article  Google Scholar 

  38. A. Thom, Proc. R. Soc. Lond. A 141, 651 (1933).

    Article  Google Scholar 

  39. W. Wu, A. DeConinck, J.A. Lewis, Adv. Mater. 23, 24 (2011).

    CAS  Google Scholar 

  40. A.M. Compaan, K. Christensen, Y. Huang, ACS Biomater. Sci. Eng. (2016), doi:10.1021/acsbiomaterials.6b00432.

  41. J. Visser, B. Peters, T.J. Burger, J. Boomstra, W.J. Dhert, F.P. Melchels, J. Malda, Biofabrication 5, 035007 (2013).

    Article  CAS  Google Scholar 

  42. D.B. Kolesky, K.A. Homan, M.A. Skylar-Scott, J.A. Lewis, Proc. Natl. Acad. Sci. U.S.A. 113, 3179 (2016).

    Article  CAS  Google Scholar 

  43. V.K. Lee, D.Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P.A. Vincent, G. Dai, Biomaterials 35 8092 (2014).

    Article  CAS  Google Scholar 

  44. W. Lee, V. Lee, S. Polio, P. Keegan, J.-H. Lee, K. Fischer, J.-K. Park, S.-S. Yoo, Biotechnol. Bioeng. 105, 1178 (2010).

    CAS  Google Scholar 

  45. R. Sooppan, S.J. Paulsen, J. Han, A.H. Ta, P. Dinh, A.C. Gaffey, C. Venkataraman, A. Trubelja, G. Hung, J.S. Miller, Tissue Eng. Part C Methods 22 1 (2015).

    Article  CAS  Google Scholar 

  46. L. Zhao, V.K. Lee, S.-S. Yoo, G. Dai, X. Intes, Biomaterials 33 5325 (2012).

    Article  CAS  Google Scholar 

  47. G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums (Pitt Press, 1851), vol. 9.

  48. E. Pairam, H. Le, A. Fernández-Nieves, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 021002 (2014).

    Article  CAS  Google Scholar 

  49. M. Shanahan, P. Degennes, C.R. Acad. Sci. II 302, 517 (1986).

    Google Scholar 

  50. R.W. Style, L. Isa, E.R. Dufresne, Soft Matter 11 7412 (2015).

    Article  CAS  Google Scholar 

  51. R.W. Style, A. Jagota, C.-Y. Hui, E.R. Dufresne, Annu. Rev. Condens. Matter Phys. 8, 99 (2016).

    Article  CAS  Google Scholar 

  52. Y.-W. Chang, A.A. Fragkopoulos, S.M. Marquez, H.D. Kim, T.E. Angelini, A. Fernández-Nieves, New J. Phys. 17, 033017 (2015).

    Article  CAS  Google Scholar 

  53. B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002).

    Article  CAS  Google Scholar 

  54. S.U. Pickering, J. Chem. Soc. Trans. 91, 2001 (1907).

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Science Foundation under Grant DMR-1352043.

To view supplementary material for this article, please visit https://doi.org/10.1557/mrs.2017.167.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Bryan, C.S., Bhattacharjee, T., Niemi, S.R. et al. Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bulletin 42, 571–577 (2017). https://doi.org/10.1557/mrs.2017.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.167

Navigation