Skip to main content
Log in

Paper-based microfluidic devices: A complex low-cost material in high-tech applications

  • System Integration of Functionalized Natural Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Paper is a material made from renewable resources, and it has been used intensively for almost 2000 years. It is a highly porous, bendable, and foldable flat structure of randomly arranged and connected fiber-like basic building blocks. The capability to transport fluids without pumps and sophisticated dosing systems is attractive. Paper microfluidics especially has gained increasing interest, particularly in the last decade. Although a number of interesting demonstration devices for easy-to-use diagnostic systems have been reported, only a limited number of these have found applications. This is mainly due to the geometric and chemical complexity of the material. While chemical functionalization (e.g., for defining hydrophobic barriers for spatially resolved fluid transport) is well advanced, understanding and controlling capillary-driven transport of a fluid within the complex porous matrix of paper. This article highlights recent advances and outlines design strategies for successful microfluidic paper-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G.M. Whitesides, Nature 442, 368 (2006).

    Google Scholar 

  2. J.P. Rolland, D.A. Mourey, MRS Bull. 38, 299 (2013).

    Google Scholar 

  3. X. Li, D.R. Ballerini, W. Shen, Biomicrofluidics 6, 011301 (2012).

    Google Scholar 

  4. A.K. Yetisen, M.S. Akram, C.R. Lowe, Lab Chip 13, 2210 (2013).

    Google Scholar 

  5. D.D. Liana, B. Raguse, J.J. Gooding, E. Chow, Sensors 12, 11505 (2012).

    Google Scholar 

  6. P.J. Bracher, M. Gupta, G.M. Whitesides, J. Mater. Chem. 20, 5117 (2010).

    Google Scholar 

  7. W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009).

    Google Scholar 

  8. A. Apilux, W. Siangproh, N. Praphairaksit, O. Chailapakul, Talanta 97, 388 (2012).

    Google Scholar 

  9. T. Songjaroen, W. Dungchai, O. Chailapakul, W. Laiwattanapaisal, Talanta 85, 2587 (2011).

    Google Scholar 

  10. J. Wang, M.R.N. Monton, X. Zhang, C.D.M. Filipe, R. Pelton, J.D. Brennan, Lab Chip 14, 691 (2014).

    Google Scholar 

  11. A. Böhm, F. Carstens, C. Trieb, S. Schabel, M. Biesalski, Microfluid. Nanofluid. 16, 789 (2014).

    Google Scholar 

  12. X. Li, J. Tian, G. Garnier, W. Shen, Colloids Surf. B 76, 564 (2010).

    Google Scholar 

  13. A. Arena, N. Donato, G. Saitta, A. Bonavita, G. Rizzo, G. Neri, Sens. Actuators B 145, 488 (2010).

    Google Scholar 

  14. Y. Lu, W. Shi, J. Qin, B. Lin, Anal. Chem. 82, 329 (2010).

    Google Scholar 

  15. E. Fu, B. Lutz, P. Kauffman, P. Yager, Lab Chip 10, 918 (2010).

    Google Scholar 

  16. E. Fu, S.A. Ramsey, P. Kauffman, B. Lutz, P. Yager, Microfluid. Nanofluid. 10, 29 (2011).

    Google Scholar 

  17. E.M. Fenton, M.R. Mascarenas, G.P. López, S.S. Sibbett, ACS Appl. Mater. Interfaces 1, 124 (2009).

    Google Scholar 

  18. M. Cretich, V. Sedini, F. Damin, M. Pelliccia, L. Sola, M. Chiari, Anal. Biochem. 397, 84 (2010).

    Google Scholar 

  19. M.S. Khan, G. Thouas, W. Shen, G. Whyte, G. Garnier, Anal. Chem. 82, 4158 (2010).

    Google Scholar 

  20. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 105, 19606 (2008).

    Google Scholar 

  21. J.L. Osborn, B. Lutz, E. Fu, P. Kauffman, D.Y. Stevens, P. Yager, Lab Chip 10, 2659 (2010).

    Google Scholar 

  22. E. Carrilho, S.T. Phillips, S.J. Vella, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 5990 (2009).

    Google Scholar 

  23. A.R. Rezk, A. Qi, J.R. Friend, W.H. Li, L.Y. Yeo, Lab Chip 12, 773 (2012).

    Google Scholar 

  24. A.C. Glavan, R.V. Martinez, E.J. Maxwell, A.B. Subramaniam, R.M.D. Nunes, S. Soh, G.M. Whitesides, Lab Chip 13, 2922 (2013).

    Google Scholar 

  25. T. Songjaroen, W. Dungchai, O. Chailapakul, C.S. Henry, W. Laiwattanapaisal, Lab Chip 12, 3392 (2012).

    Google Scholar 

  26. X. Yang, O. Forouzan, T.P. Brown, S.S. Shevkoplyas, Lab Chip 12, 274 (2011).

    Google Scholar 

  27. S. Jahanshahi-Anbuhi, P. Chavan, C. Sicard, V. Leung, S.M.Z. Hossain, R. Pelton, J.D. Brennan, C.D.M. Filipe, Lab Chip 12, 5079 (2012).

    Google Scholar 

  28. J. Songok, M. Toivakka, Microfluid. Nanofluid. 20, 63 (2016).

    Google Scholar 

  29. X. Li, P. Zwanenburg, X. Liu, Lab Chip 13, 2609 (2013).

    Google Scholar 

  30. E. Evans, E.F.M. Gabriel, W.K.T. Coltro, C.D. Garcia, Analyst 139, 2127 (2014).

    Google Scholar 

  31. R. Lucas, Colloid Polym. Sci. 23, 15 (1918).

    Google Scholar 

  32. E.W. Washburn, Phys. Rev. 17, 273 (1921).

    Google Scholar 

  33. S. Hong, W. Kim, Microfluid. Nanofluid. 19, 845 (2015).

    Google Scholar 

  34. B.J. Toley, B. McKenzie, T. Liang, J.R. Buser, P. Yager, E. Fu, Anal. Chem. 85, 11545 (2013).

    Google Scholar 

  35. E. Fu, P. Kauffman, B. Lutz, P. Yager, Sens. Actuators B 149, 325 (2010).

    Google Scholar 

  36. E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S.A. Ramsey, B. Lutz, P. Yager, Anal. Chem. 83, 7941 (2011).

    Google Scholar 

  37. J. Houghtaling, T. Liang, G. Thiessen, E. Fu, Anal. Chem. 85, 11201 (2013).

    Google Scholar 

  38. B. Lutz, T. Liang, E. Fu, S. Ramachandran, P. Kauffman, P. Yager, Lab Chip 13, 2840 (2013).

    Google Scholar 

  39. H. Noh, S.T. Phillips, Anal. Chem. 82, 8071 (2010).

    Google Scholar 

  40. H. Noh, S.T. Phillips, Anal. Chem. 82, 4181 (2010).

    Google Scholar 

  41. A.W. Martinez, S.T. Phillips, Z. Nie, C.-M. Cheng, E. Carrilho, B.J. Wiley, G.M. Whitesides, Lab Chip 10, 2499 (2010).

    Google Scholar 

  42. H. Liu, X. Li, R.M. Crooks, Anal. Chem. 85, 4263 (2013).

    Google Scholar 

  43. H. Chen, J. Cogswell, C. Anagnostopoulos, M. Faghri, Lab Chip 12, 2909 (2012).

    Google Scholar 

Download references

Acknowledgements

W e acknowledge ongoing financial support from the Verband der Papierindustrie, Germany, and the Vereinigung Arbeitgeberverbände der Papierindustrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Böhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, A., Biesalski, M. Paper-based microfluidic devices: A complex low-cost material in high-tech applications. MRS Bulletin 42, 356–364 (2017). https://doi.org/10.1557/mrs.2017.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.92

Navigation