Skip to main content

Advertisement

Log in

NOMAD: The FAIR concept for big data-driven materials science

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Data are a crucial raw material of this century. The amount of data that have been created in materials science thus far and that continues to be created every day is immense. Without a proper infrastructure that allows for collecting and sharing data, the envisioned success of big data-driven materials science will be hampered. For the field of computational materials science, the NOMAD (Novel Materials Discovery) Center of Excellence (CoE) has changed the scientific culture toward comprehensive and findable, accessible, interoperable, and reusable (FAIR) data, opening new avenues for mining materials science big data. Novel data-analytics concepts and tools turn data into knowledge and help in the prediction of new materials and in the identification of new properties of already known materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. *We note that accessibility in this context not only concerns the data itself, but largely also the hardware at which it is stored, as well as details of the data infrastructure.

  2. The concept of the NOMAD Repository and Archive was developed in 2014, independently and parallel to the “FAIR Guiding Principles.”10 Interestingly, the substance is practically identical.

  3. The understanding of “interoperable” is somewhat controversial. It may apply when (1) metadata and data use a formal, accessible, shared, and widely accepted language for data representation; (2) the vocabulary of metadata and data follow FAIR principles; (3) metadata and data include qualified references to other (meta) data and to the authors who created the results.

  4. §In the NOMAD CoE, we use the term repurposable, while in the FAIR concept it was termed reusable. Both obviously mean the same in this context.

  5. **The concept of a fourth paradigm was probably first discussed by J. Gray on January 11, 2007, before he went missing in the Pacific Ocean on January 28, 2007.29

  6. ‡‡The Psi-k network represents scientists concerned with ab initio calculations of materials.

  7. §§CECAM is a European organization devoted to the promotion of fundamental research on advanced computational methods and to their application to important problems in frontier areas of science and technology, in physics and chemistry of condensed matter.

  8. ***ETSF, the European Theoretical Spectroscopy Facility, is a knowledge center for theoretical spectroscopy.

  9. ††”Codes” is widely used jargon in the field for scientific software packages.

References

  1. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191 (2013).

    Google Scholar 

  2. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65, 1501 (2013).

    Google Scholar 

  3. I.E. Castelli, T. Olsen, S. Datta, D.D. Landis, S. Dahl, K.S. Thygesen, K.W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).

    Google Scholar 

  4. M. Nishijima, T. Ootani, Y. Kamimura, T. Sueki, S. Esaki, S. Murai, K. Fujita, K. Tanaka, K. Ohira, Y. Koyama, I. Tanaka, Nat. Commun. 5, ncomms5553 (2014).

  5. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A.M. Brockway, A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 2241 (2011).

    Google Scholar 

  6. https://www.mgi.gov.

  7. J.A. Warren, R.F. Boisvert, “Workshop Report: Building the Materials Innovation Infrastructure: Data and Standards A Materials Genome Initiative Workshop” NIST Report No. NISTIR 7898, (2012).

  8. “Empty Rhetoric over Data Sharing Slows Science” [Editorial], Nature 546, 327 (2017).

    Google Scholar 

  9. The NOMAD (Novel Materials Discovery) Center of Excellence (CoE), https://nomad-coe.eu.

  10. M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, Sci. Data 3, 160018 (2016).

    Google Scholar 

  11. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  12. L.M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs, M. Lueders, M. Oliveira, M. Scheffler, Psi-k Scientific Highlight of the Month 131 (2016).

  13. L.M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs, M. Lueders, M. Oliveira, M. Scheffler, NPJ Comput. Mater. 3, 46 (2017).

    Google Scholar 

  14. The NOMAD Archive, https://metainfo.nomad-coe.eu/nomadmetainfo_public/archive.html.

  15. K. Rajan, Mater. Today 8, 35 (2005).

    Google Scholar 

  16. M.W. Gaultois, A.O. Oliynyk, A. Mar, T.D. Sparks, G.J. Mulholland, B. Meredig, APL Mater. 4, 053213 (2016).

    Google Scholar 

  17. T. Mueller, A.G. Kusne, R. Ramprasad, in Reviews in Computational Chemistry, A.L. Parrill, K.B. Lipkowitz, Eds. (Wiley, Hoboken, NJ), vol. 29, p. 186.

  18. T. Mueller, E. Johlin, J.C. Grossman, Phys. Rev. B Condens. Matter 89, 115202 (2014).

    Google Scholar 

  19. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ Comput. Mater. 3, 54 (2017).

    Google Scholar 

  20. G. Pilania, C.C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad. Sci. Rep. 3, 2810 (2013).

  21. A.V. Lilienfeld, Angew. Chem. Int. Ed. Engl. 57, 4164 (2018).

    Google Scholar 

  22. A. Ziletti, D. Kumar, M. Scheffler, L.M. Ghiringhelli, Nat. Commun. 9, 2775 (2018).

    Google Scholar 

  23. Q. Yang, C.A. Sing-Long, E.J. Reed, Chem. Sci. 8, 5781 (2017).

    Google Scholar 

  24. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015).

    Google Scholar 

  25. L.M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R. Ouyang, S.V. Levchenko, C. Draxl, M. Scheffler, New J. Phys. 19, 023017 (2017).

    Google Scholar 

  26. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, Phys. Rev. Mater. 2, 083802 (2018).

    Google Scholar 

  27. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9, 3404 (2013).

    Google Scholar 

  28. B.R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L.M. Ghiringhelli, New J. Phys. 19, 013031 (2017).

    Google Scholar 

  29. J. Gray, The Fourth Paradigm, Data Intensive Discovery, T. Hey, S. Tansley, K. Tolle, Eds. (Microsoft Research, Redmond, WA, 2009).

  30. J.A. Van Vechten, Phys. Rev. 182, 891 (1969).

    Google Scholar 

  31. J.C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

    Google Scholar 

  32. M. Ashby, Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Burlington, MA, 1999).

  33. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Ius¸an, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.X. Zhang, S. Cottenier, Science 351, aad3000 (2016).

  34. The Novel Materials Discovery (NOMAD) Repository, https://repository. nomad-coe.eu.

  35. The NOMAD Encyclopedia, https://encyclopedia.nomad-coe.eu.

  36. http://www.psi-k.org.

  37. https://www.cecam.org.

  38. https://www.etsf.eu.

  39. http://www.aflowlib.org.

  40. http://oqmd.org.

  41. https://materialsproject.org.

  42. Scientific Data, a journal of the Nature Publishing Group, https://www.nature.com/sdata.

  43. C. Draxl, F. Illas, M. Scheffler, Nature 548, 523 (2017).

    Google Scholar 

  44. NOMAD—The Materials Science Discovery Repository, https://youtu.be/UcnHGokl2Nc, 2017-05-30.

  45. Conversion of CO2 into Fuels and Other Useful Chemicals, https://youtu.be/zHlS_8PwYYs, 2017-06-23.

  46. An Exciton in Lithium Fluoride—Where Is the Electron? https://youtu.be/XPPDeeP1coM, 2017-06-23.

  47. The NOMAD Analytics Toolkit, https://analytics-toolkit.nomad-coe.eu/home.

  48. C. Mera Acosta, R. Ouyang, A. Fazzio, M. Scheffler, L.M. Ghiringhelli, C. Carbogno, arXiv:1805.10950 (2018).

  49. https://www.bigmax.mpg.de.

Download references

Acknowledgments

This work received funding from the EU’s Horizon 2020 Research and Innovation Programme, Grant Agreement No. 676580, the NOMAD Laboratory CoE and No. 740233, ERC: TEC1P. Support from the Einstein Foundation Berlin is appreciated. We thank C. Koch for in-depth discussions and information about transmission electron microscopy, P. Wittenburg for clarification of the FAIR concept, and the whole NOMAD team for the invaluable effort to build the entire NOMAD infrastructure and its services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Draxl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draxl, C., Scheffler, M. NOMAD: The FAIR concept for big data-driven materials science. MRS Bulletin 43, 676–682 (2018). https://doi.org/10.1557/mrs.2018.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.208

Navigation