Skip to main content
Log in

Theory of piezotronics and piezo-phototronics

  • Piezotronics and Piezo-Phototronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Piezotronic and piezo-phototronic devices exhibit high performance and have potential applications especially in next-generation self-powered, flexible electronics and wearable systems. In these devices, a strain-induced piezoelectric field at a junction, contact, or interface can significantly modulate the carrier generation, recombination, and transport properties. This mechanism has been studied based on the theory of piezotronics and piezo-phototronics. Simulation-driven materials design and device improvements have been greatly propelled by the finite element method, density functional theory, and molecular dynamics for achieving high-performance devices. Dynamical piezoelectric fields can also control new quantum states in quantum materials, such as in topological insulators, which pave a new path for enhancing performance and for investigating the fundamental physics of quantum piezotronics and piezo-phototronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W. Wu, Z.L. Wang, Nat. Rev. Mater. 1, 16031 (2016).

    Google Scholar 

  2. Z.L. Wang, Nano Today 5, 540 (2010).

    Google Scholar 

  3. Z.L. Wang, Piezotronics and Piezo-Phototronics (Springer, Berlin, 2013).

    Google Scholar 

  4. Z.L. Wang, J.H. Song, Science 312, 242 (2006).

    Google Scholar 

  5. Z.L. Wang, “Nanogenerators and Nanopiezotronics,” presented at the 2007 IEEE International Electron Devices Meeting, Washington, DC, December 10–12, 2007, pp. 371–374.

  6. Y. Qin, X. Wang, Z.L. Wang, Nature 451, 809 (2008).

    Google Scholar 

  7. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6, 2768 (2006).

    Google Scholar 

  8. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Nano Lett. 8, 3035 (2008).

    Google Scholar 

  9. Q. Yang, W. Wang, S. Xu, Z.L. Wang, Nano Lett. 11, 4012 (2011).

    Google Scholar 

  10. D.Q. Zheng, Z.M. Zhao, R. Huang, J.H. Nie, L.J. Li, Y. Zhang, Nano Energy 32, 448 (2017).

    Google Scholar 

  11. W. Wu, X. Wen, Z.L. Wang, Science 340, 952 (2013).

    Google Scholar 

  12. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013).

    Google Scholar 

  13. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature 514, 470 (2014).

    Google Scholar 

  14. W. Wu, Y. Wei, Z.L. Wang, Adv. Mater. 22, 4711 (2010).

    Google Scholar 

  15. Y. Zhang, Y. Liu, Z.L. Wang, Adv. Mater. 23, 3004 (2011).

    Google Scholar 

  16. Y. Zhang, Z.L. Wang, Adv. Mater. 24, 4712 (2012).

    Google Scholar 

  17. Y. Zhang, Y. Yang, Z.L. Wang, Energy Environ. Sci. 5, 6850 (2012).

    Google Scholar 

  18. Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Nano Energy 14, 257 (2015).

    Google Scholar 

  19. P. Zhu, Z. Zhao, J. Nie, G. Hu, L. Li, Y. Zhang, Nano Energy 50, 744 (2018).

    Google Scholar 

  20. K. Gu, D.Q. Zheng, L.J. Li, Y. Zhang, RSC Adv. 8, 8694 (2018).

    Google Scholar 

  21. K.W. Chung, Z. Wang, J.C. Costa, F. Williamson, P.P. Ruden, M.I. Nathan, Appl. Phys. Lett. 59, 1191 (1991).

    Google Scholar 

  22. M. Mitra, J. Drayton, M.L.C. Cooray, V.G. Karpov, D. Shvydka, J. Appl. Phys. 102, 034505 (2007).

    Google Scholar 

  23. F. Boxberg, N. Sondergaard, H.Q. Xu, Nano Lett. 10, 1108 (2010).

    Google Scholar 

  24. J.H. Nie, G.W. Hu, L.J. Li, Y. Zhang, Nano Energy 46, 423 (2018).

    Google Scholar 

  25. Y. Hu, Y. Zhang, Y. Chang, R.L. Snyder, Z.L. Wang, ACS Nano 4, 4220 (2010).

    Google Scholar 

  26. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  27. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, UK, 1996).

    Google Scholar 

  28. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988).

    Google Scholar 

  29. R.W. Soutas-Little, Elasticity, (Dover Publications, Mineola, NY, 1999) pp. XVI, 431.

  30. L. Luo, Y. Zhang, L.J. Li, Semicond. Sci. Technol. 32, 044002 (2017).

    Google Scholar 

  31. L.S. Jin, X.H. Yan, X.F. Wang, W.J. Hu, Y. Zhang, L.J. Li, J. Appl. Phys. 123, 025709 (2018).

    Google Scholar 

  32. K. Natori, J. Appl. Phys. 76, 4879 (1994).

    Google Scholar 

  33. Y. Zhang, L.J. Li, Nano Energy 22, 533 (2016).

    Google Scholar 

  34. L.J. Li, Y. Zhang, J. Appl. Phys. 121, 214302 (2017).

    Google Scholar 

  35. L.J. Li, Y. Zhang, Nano Res. 10, 2527 (2017).

    Google Scholar 

  36. X. Huang, C. Jiang, C. Du, L. Jing, M. Liu, W. Hu, Z.L. Wang, ACS Nano 10, 11420 (2016).

    Google Scholar 

  37. C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z.L. Wang, ACS Nano 11, 9405 (2017).

    Google Scholar 

  38. R. Baraki, N. Novak, T. Fromling, T. Granzow, J. Rodel, Appl. Phys. Lett. 105, 111604 (2014).

    Google Scholar 

  39. H.D. Espinosa, R.A. Bernal, M. Minary-Jolandan, Adv. Mater. 24, 4656 (2012).

    Google Scholar 

  40. Y.J. Lei, Y.S. Leng, “Molecular Simulation of Metal-ZnO Contact in ZnO Piezoelectric Nanogenerator,” presented at the 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, Suzhou, China, August 26–30, 2013, pp. 291–294.

  41. D. Tan, Y. Xiang, Y. Leng, MRS Adv. 2, 3433 (2017).

    Google Scholar 

  42. D. Tan, Y. Xiang, Y. Leng, Y. Leng, Nano Energy 50, 291 (2018).

    Google Scholar 

  43. E.J. Reed, M.R. Armstrong, K.Y. Kim, J.H. Glownia, Phys. Rev. Lett. 101, 014302 (2008).

    Google Scholar 

  44. S. Dai, M.L. Dunn, H.S. Park, Nanotechnology 21, 445707 (2010).

    Google Scholar 

  45. J. Zhang, J. Zhou, Nano Energy 50, 298 (2018).

    Google Scholar 

  46. Z. Zhou, D. Qian, M. Minary-Jolandan, ACS Biomater. Sci. Eng. 2, 929 (2016).

    Google Scholar 

  47. B. Huang, Inorg. Chem. 54, 11423 (2015).

    Google Scholar 

  48. B.L. Huang, M.Z. Sun, D.F. Peng, Nano Energy 47, 150 (2018).

    Google Scholar 

  49. B. Huang, Phys. Chem. Chem. Phys. 19, 12683 (2017).

    Google Scholar 

  50. H. Momida, T. Oguchi, Appl. Phys. Express 11, 041201 (2018).

    Google Scholar 

  51. W. Liu, A.H. Zhang, Y. Zhang, Z.L. Wang, Nano Energy 14, 355 (2015).

    Google Scholar 

  52. W. Liu, A. Zhang, Y. Zhang, Z.L. Wang, Nanotechnology 27, 205204 (2016).

    Google Scholar 

  53. R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Mater. Today 21, 611 (2018).

    Google Scholar 

  54. A.H. Zhang, M.Z. Peng, M. Willatzen, J.Y. Zhai, Z.L. Wang, Nano Res. 10, 134 (2017).

    Google Scholar 

  55. H.Y. Zhu, Y. Wang, J. Xiao, M. Liu, S.M. Xiong, Z.J. Wong, Z.L. Ye, Y. Ye, X.B. Yin, X. Zhang, Nat. Nanotechnol. 10, 151 (2015).

    Google Scholar 

  56. R.X. Fei, W.B. Li, J. Li, L. Yang, Appl. Phys. Lett. 107, 173104 (2015).

    Google Scholar 

  57. Y. Yan, J.E. Zhou, D. Maurya, Y.U. Wang, S. Priya, Nat. Commun. 7, 13089 (2016).

    Google Scholar 

  58. L.C.L.Y. Voon, M. Willatzen, J. Appl. Phys. 109, 031101 (2011).

    Google Scholar 

  59. D. Barettin, S. Madsen, B. Lassen, M. Willatzen, Commun. Comput. Phys. 11, 797 (2012).

    Google Scholar 

  60. L.C.L.Y. Voon, M. Willatzen, The kp Method (Springer, Berlin, 2009).

    Google Scholar 

  61. M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Google Scholar 

  62. A.D. Andreev, E.P. O’Reilly, Phys. Rev. B 62, 15851 (2000).

    Google Scholar 

  63. V.A. Fonoberov, A.A. Balandin, J. Appl. Phys. 94, 7178 (2003).

    Google Scholar 

  64. O. Marquardt, S. Boeck, C. Freysoldt, T. Hickel, S. Schulz, J. Neugebauer, E.P. O’Reilly, Comput. Mater. Sci. 95, 280 (2014).

    Google Scholar 

  65. J. Lee, Z. Wang, H. Xie, K.F. Mak, J. Shan, Nat. Mater. 16, 887 (2017).

    Google Scholar 

  66. Y. Chu, P. Kharel, W.H. Renninger, L.D. Burkhart, L. Frunzio, P.T. Rakich, R.J. Schoelkopf, Science 358, 199 (2017).

    Google Scholar 

  67. Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, H. Yamaguchi, Nat. Commun. 7, 11132 (2016).

    Google Scholar 

  68. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006).

    Google Scholar 

  69. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007).

    Google Scholar 

  70. C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.C. Zhang, K. He, Y. Wang, L. Lu, X.C. Ma, Q.K. Xue, Science 340, 167 (2013).

    Google Scholar 

  71. M.S. Miao, Q. Yan, C.G. Van de Walle, W.K. Lou, L.L. Li, K. Chang, Phys. Rev. Lett. 109, 186803 (2012).

    Google Scholar 

  72. G. Hu, Y. Zhang, L. Li, Z.L. Wang, ACS Nano 12, 779 (2018).

    Google Scholar 

  73. M. Dan, G. Hu, L. Li, Y. Zhang, Nano Energy 50, 544 (2018).

    Google Scholar 

  74. L. Zhu, Y. Zhang, P. Lin, Y. Wang, L. Yang, L. Chen, L. Wang, B. Chen, Z.L. Wang, ACS Nano 12, 1811 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Leng, Y., Willatzen, M. et al. Theory of piezotronics and piezo-phototronics. MRS Bulletin 43, 928–935 (2018). https://doi.org/10.1557/mrs.2018.297

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.297

Navigation