Skip to main content
Log in

Materials challenges for the heat-assisted magnetic recording head–disk interface

  • Materials for Heat-Assisted Magnetic Recording
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The heat-assisted magnetic recording (HAMR) head–disk interface is a unique operating environment that combines nanoscale spacings, high shear rates, high-temperature gradients, and high optical fluxes in a mass-produced device. One of the greatest challenges is to develop materials for the head–disk interface that enable the required head–media spacing while also providing reliability. Traditional head–disk interface materials, engineered and optimized for conventional magnetic recording hard-disk drives, are challenged to provide the needed performance at the high temperatures that HAMR involves. We review some of the primary materials used in conventional magnetic recording, how high temperatures challenge their performance, and some of the current understanding and strategies to develop a reliable HAMR head–disk interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices (Springer-Verlag, New York, 1996).

  2. F. Jorgensen, The Complete Handbook of Magnetic Recording (TAB Books, New York, 1996).

  3. H.C. Tsai, D.B. Bogy, J. Vac. Sci. Technol. A 5 (6), 3287 (1987).

    Google Scholar 

  4. J.D. Kiely, P.M. Jones, H. Wang, R. Yang, W. Scholz, M. Benakli, J.L. Brand, S. Ganagopadhyay, IEEE Trans. Magn. 50 (3), 3300505 (2014).

    Google Scholar 

  5. B. Marchon, T. Pitchford, Y.-T. Hsia, S. Gangopadhyay, Adv. Tribol. 2013, 521086 (2013).

    Google Scholar 

  6. W. Gross, IBM J. Res. Dev. 3, 237 (1959).

    Google Scholar 

  7. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.-T. Hsia, M.F. Erden, Proc. IEEE 96 (11), 1810 (2008).

    Google Scholar 

  8. A. Grill, Wear 168, 143 (1993).

    Google Scholar 

  9. C.M. Mate, Wear 168, 17 (1993).

    Google Scholar 

  10. P.M. Jones, J. Ahner, C. Platt, H. Tang, J. Hohlfield, “Carbon Overcoat Loss from the Surface of a Heat Assisted Magnetic Recording Disk Due to Laser Irradiation,” presented at the ASME Information Storage and Processing Systems Conference (ASME, Santa Clara, CA, 2013).

  11. N. Wang, K. Komvopoulos, F. Rose, B. Marchon, J. Appl. Phys. 113, 083517 (2013).

    Google Scholar 

  12. A. Joshi, R. Nimmagadda, J. Herrington, J. Vac. Sci. Technol. A 8 (3), 2137 (1990).

    Google Scholar 

  13. W. Challener, F. Erden, E. Gage, Y.-T. Hsia, G. Ju, M. Kryder, T. McDaniel, R. Rottmayer, Proc. IEEE 96 (11), 1810 (2008).

    Google Scholar 

  14. M. Chowalla, A. Ferrari, J. Robertson, G. Amaratunga, Appl. Phys. Lett. 76, 1419 (2000).

    Google Scholar 

  15. C. Louro, C. Wagner Moura, N. Carvalho, M. Stueber, A. Cavaleiro, Diam. Relat. Mater. 20, 57 (2011).

    Google Scholar 

  16. Y.-T. Hsia, P.M. Jones, L. Li, J. Hohlfeld, “HAMR Head-Disk Interface—Lubricant Desorption and Laser Damage Study,” presented at the Asia-Pacific Magnetic Recording Conference 2004 (IEEE, Seoul, South Korea, 2004).

  17. K.E. Johnson, C.M. Mate, J.A. Merz, R.L. White, A.W. Wu, IBM J. Res. Dev. 40 (5), 511 (1996).

    Google Scholar 

  18. L. Wu, Nanotechnology 18, 215702 (2007).

    Google Scholar 

  19. L. Wu, F. Talke, Microsyst. Technol. 17, 1109 (2011).

    Google Scholar 

  20. Y. Zheng, W. Zhou, X. Huang, Int. J. Heat Mass Transf. 55, 886 (2012).

    Google Scholar 

  21. J.B. Dahl, D.B. Bogy, Tribol. Lett. 52, 27 (2013).

    Google Scholar 

  22. J.B. Dahl, D.B. Bogy, Tribol. Lett. 52, 163 (2013).

    Google Scholar 

  23. B. Marchon, T. Saito, IEEE Trans. Magn. 48 (11), 4471 (2012).

    Google Scholar 

  24. N. Tagawa, H. Tani, IEEE Trans. Magn. 47 (1), 105 (2011).

    Google Scholar 

  25. Y. Ma, X. Chen, B. Liu, Microsyst. Technol. 19, 291 (2013).

    Google Scholar 

  26. N. Tagawa, R. Kakitani, H. Tani, N. Iketani, I. Nakano, IEEE Trans. Magn. 45, 877 (2009).

    Google Scholar 

  27. M. Lim, A. Gellman, Tribol. Int. 38, 544 (2005).

    Google Scholar 

  28. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, J. Robertson, J. Appl. Phys. 85, 7191 (1999).

    Google Scholar 

  29. N. Wang, K. Komvopoulos, IEEE Trans. Magn. 47 (9), 2277 (2011).

    Google Scholar 

  30. B. Marchon, X.-C. Guo, B.K. Pathem, F. Rose, Q. Dai, N. Feliss, E. Schreck, J. Reiner, O. Mosendz, K. Takano, H. Do, J. Burns, Y. Saito, IEEE Trans. Magn. 50 (3), 3300607 (2014).

    Google Scholar 

  31. J. Peng, A. Sergiienko, F. Mangolini, P.E. Stallworth, S. Greenbaum, R.W. Carpick, Carbon 105, 163 (2016).

    Google Scholar 

  32. A.A. Ahmad, A.M. Alsaad, Bull. Mater. Sci. 30 (4), 301 (2007).

    Google Scholar 

  33. E. Rejda, J. Stephan, T. Nguyen, N. Zuckerman, G. Kunkel, D. Cole, M. Seigler, C. Rea, “Magnetic Devices with Variable Overcoats,” US Patent 20140177405 (March 8, 2013).

  34. N. Khamnualthong, K. Siangchaew, S. Phongwanitchaya, “Magnetic Head Having a Reader Overcoat with DLC and a Recessed Writer Overcoat without DLC,” US Patent 9,659,587 (November 6, 2015).

  35. V. Novotny, R. Hajjar, “Optical Storage System with a Head Cleaning Mechanism Based on a Position-Controllable Optical Interfacing Surface in an Optical Head,” US Patent 6307832B1 (May 4, 1999).

  36. J.D. Kiely, P.M. Jones, Y. Yang, J.L. Brand, M. Anaya-Dufresne, P.C. Fletcher, F. Zavaliche, Y. Toivola, J.C. Duda, M.T. Johnson, IEEE Trans. Magn. 53 (2), 3300307 (2017).

    Google Scholar 

  37. S. Xiaong, N. Wang, R. Smith, D. Li, E. Schreck, Q. Dai, Tribol. Lett. 65 (2), 74 (2017).

    Google Scholar 

  38. Y. Yang, X. Li, M. Stirniman, X. Yan, F. Zavaliche, H. Wang, J. Huang, H. Tang, P.M. Jones, J.D. Kiely, J.L. Brand, IEEE Trans. Magn. 51 (11), 1 (2015).

    Google Scholar 

  39. V. Raman, D. Gillis, R. Wolter, Trans. ASME 122, 444 (2000).

    Google Scholar 

  40. P.M. Jones, Z.Z. Fan, X. Ma, H. Wang, H.H. Tang, IEEE Trans. Magn. 53 (1), 99 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Kiely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiely, J.D., Jones, P.M. & Hoehn, J. Materials challenges for the heat-assisted magnetic recording head–disk interface. MRS Bulletin 43, 119–124 (2018). https://doi.org/10.1557/mrs.2018.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.4

Navigation