Skip to main content
Log in

Physical Origins of Intrinsic Stresses in Volmer-Weber Thin Films

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As-deposited thin films grown by vapor deposition often exhibit large intrinsic stresses that can lead to film failure. While this is an “old” materials problem, our understanding has only recently begun to evolve in a more sophisticated fashion. Sensitive real-time measurements of stress evolution during thin-film deposition reveal a generic compressive-tensile-compressive behavior that correlates with island nucleation and growth, island coalescence, and postcoalescence film growth. In this article, we review the fundamental mechanisms that can generate stresses during the growth of Volmer-Weber thin films. Compressive stresses in both discontinuous and continuous films are generated by surface-stress effects. Tensile stresses are created during island coalescence and grain growth. Compressive stresses can also result from the flux-driven incorporation of excess atoms within grain boundaries. While significant progress has been made in this field recently, further modeling and experimentation are needed to quantitatively sort out the importance of the different mechanisms to the overall behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See references in G.G. Stoney, Proc. R.Soc. London, Ser. A 82 (1909) p. 172.

    Google Scholar 

  2. M.F. Doerner and W.D. Nix, CRC Crit. Rev. Solid State Mater. Sci. 14 (1988) p. 225.

    Google Scholar 

  3. W.D. Nix, Metall. Trans. A 20A (1989) p. 2217.

    Google Scholar 

  4. J.A. Floro and E. Chason, in In Situ RealTime Characterization of Thin Films, edited by O. Auciello and A.R. Krauss (John Wiley & Sons, New York, 2001) p. 191.

  5. P.A. Flinn, D.S. Gardner, and W.D. Nix, IEEE Trans. Electron Devices ED–34 (1987) p. 689.

    Google Scholar 

  6. See the list of references in R. Koch, J. Phys.: Condens. Matter 6 (1994) p. 9519.

    Google Scholar 

  7. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C.V. Thompson, J. Appl. Phys. 89 (2001) p. 4886.

    Google Scholar 

  8. A.L. Shull and F. Spaepen, J. Appl. Phys. 80 (1996) p. 6243.

    Google Scholar 

  9. R.C. Cammarata, Prog. Surf. Sci. 46 (1994) p. 1.

    Google Scholar 

  10. R.C. Cammarata, T.M. Trimble, and D.J. Srolovitz, J. Mater. Res. 15 (2000) p. 2468.

    Google Scholar 

  11. While surface stresses are frequently tensile, ß can be either positive or negative depending on the material and crystallographic orientation of the island; see Reference 10.

  12. R.W. Hoffman, Thin Solid Films 34 (1976) p. 185.

    Google Scholar 

  13. W.D. Nix and B.M. Clemens, J. Mater. Res. 14 (1999) p. 3467.

    Google Scholar 

  14. L.B. Freund and E. Chason, J. Appl. Phys. 89 (2001) p. 4866.

    Google Scholar 

  15. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  16. S.C. Seel, C.V. Thompson, S.J. Hearne, and J.A. Floro, J. Appl. Phys. 88 (2000) p. 7079.

    Google Scholar 

  17. B.W. Sheldon, A. Lau, and A. Rajamani, J. Appl. Phys. 90 (2001) p. 5097.

    Google Scholar 

  18. C.V. Thompson, J. Mater. Res. 8 (1993) p. 237.

    Google Scholar 

  19. C.V. Thompson, Annu. Rev. Mater. Sci. 20 (1990) p. 245.

    Google Scholar 

  20. P. Chaudhari, J. Vac. Sci. Technol. 9 (1972) p. 520.

    Google Scholar 

  21. H. Lee, PhD thesis, Stanford University, 2001.

    Google Scholar 

  22. J.A. Floro, C.V. Thompson, R. Carel, and P.D. Bristowe, J. Mater. Res. 9 (1994) p. 2411.

    Google Scholar 

  23. E.M. Zielinski, R.P. Vinci, and J.C. Bravman, J. Appl. Phys. 76 (1994) p. 4516.

    Google Scholar 

  24. J.E. Sanchez Jr and E. Arzt, Scripta Metall. Mater. 27 (1992) p. 285.

    Google Scholar 

  25. V. Ramaswamy PhD thesis, Stanford University, 2000.

    Google Scholar 

  26. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne, Phys. Rev. Lett. (2001) submitted for publication.

    Google Scholar 

  27. M.D. Thouless, Acta Metall. Mater. 41 (1993) p. 1057.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floro, J.A., Chason, E., Cammarata, R.C. et al. Physical Origins of Intrinsic Stresses in Volmer-Weber Thin Films. MRS Bulletin 27, 19–25 (2002). https://doi.org/10.1557/mrs2002.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.15

Keywords

Navigation