Skip to main content

Advertisement

Log in

Science and Technology of Shape-Memory Alloys: New Developments

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The martensitic (also called displacive or diffusionless) transformation is a classical cooperative phenomenon in solids similar to ferromagnetism. Although the displacement of each atom is not large, the transformation results in a macroscopic change in shape, since all of the atoms move in the same direction in a domain or variant. As a result, unique properties arise, such as the shape-memory effect and superelasticity, whose characteristics are quite distinct from those of normal metals and alloys. Because of these unique properties, shape-memory alloys (SMAs) have been used as new functional materials for applications such as couplings, sensors, actuators, and antennas for cellular phones. In this issue of MRS Bulletin, we present an overview of recent progress in this field. In this introductory article, we discuss fundamental notions, such as the mechanism of the shape-memory effect, the martensitic transformation, and superelasticity, along with examples of applications and other important recent topics not treated in the following articles. It will be shown that progress in the science and technology of shape-memory alloys has been achieved by the side-by-side development of fundamentals and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.C. Chang and T.A. Read, Trans. AIME 189 (1951) p. 47.

    Google Scholar 

  2. W.J. Buehler, J.W. Gilfrich, and R.C. Wiley, J. Appl. Phys. 34 (1963) p. 1475.

    CAS  Google Scholar 

  3. Z. Nishiyama, Martensitic Transformation (Academic Press, New York, 1978).

    Google Scholar 

  4. J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1965).

    Google Scholar 

  5. C.M. Wayman, Introduction to Crystallography of Martensitic Transformations (Macmillan, New York, 1964).

    Google Scholar 

  6. H. Warlimont and L. Delaey, Prog. Mater. Sci. 18 (1974) p. 1.

    Google Scholar 

  7. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki, J. Phys. (France) Colloque C4, Suppl. 12, Vol. 43 (1982) p. C4–255.

    Google Scholar 

  8. K. Otsuka and C.M. Wayman, eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  9. J.D. Harrison and D.E. Hodgson, in Shape Memory Effects in Alloys, edited by J. Perkins (Plenum Publishers, New York, 1975) p. 517.

    Google Scholar 

  10. R. Banks, in Shape Memory Effects in Alloys, edited by J. Perkins (Plenum Publishers, New York, 1975) p. 537.

    Google Scholar 

  11. P. Wollants, M. de Bonte, L. Delaey, and J.R. Roos, Z. Metallkd. 70 (1979) p. 298.

    CAS  Google Scholar 

  12. T. Todoroki, Met. Technol. 54 (5) (1984) (in Japanese) p. 2.

    CAS  Google Scholar 

  13. H. Ohkata and H. Tamura, in Materials for Smart Systems II, edited by E.P. George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, and M. Wun-Fogle (Mater. Res. Soc. Symp. Proc. 459, Pittsburgh, 1997) p. 345.

  14. K. Uchino, in Shape Memory Materials, edited by K. Otsuka and C.M. Wayman (Cambridge University Press, Cambridge, 1998) p. 184.

  15. Y. Hosoda, M. Fujie, and Y. Kojima, presented at the 1st Meeting of the Japan Robot Society, Tokyo, 1982, preprint, p. 213.

    Google Scholar 

  16. K. Ikuta, M. Tsukamoto, and S. Hirose, in Proc. IEEE Int. Conf. on Robotics and Automation (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1988) p. 427.

    Google Scholar 

  17. C.A. Rogers, Smart Materials, Structures, and Mathematical Issues (Technomic, Lancaster, PA, 1989).

    Google Scholar 

  18. Z.G. Wei, R. Sandstrom, and S. Miyazaki, J. Mater. Sci. 33 (1998) pp. 3743, 3763.

    CAS  Google Scholar 

  19. L.McD. Schetky, in Shape-Memory Materials and Phenomena—Fundamental Aspects and Applications, edited by C.T. Liu, H. Kunsmann, K. Otsuka, and M. Wuttig (Mater. Res. Soc. Symp. Proc. 246, Pittsburgh, 1992) p. 299.

  20. M. Marlinska, J.A. Balta, V. Michaud, J.-E. Bidaux, J.A. Manson, and R. Gotthardt, in Proc. ESOMAT-2000 (2002) in press.

    Google Scholar 

  21. J. Van Humbeeck, J. Stoiber, L. Delaey, and R. Gotthardt, Z. Metallkd. 86 (1995) p. 176.

    Google Scholar 

  22. V.V. Skorohod, S.M. Solonin, I.F. Martynova, and V.N. Klimenko, Sci. Sintering 22 (1990) p. 21.

    Google Scholar 

  23. Holemans’ Jewelry Catalog 2001; Avenue Louise, 3-1050 Brussels, Belgium.

  24. K. Otsuka, H. Sakamoto, and K. Shimizu, Acta Metall. 27 (1979) p. 585.

    CAS  Google Scholar 

  25. H. Horikawa, in Proc. SMST99 (Shape Memory and Superelastic Technologies), edited by W. Van Moorleghem, P. Besselink, and D. Aslandis (Shape Memory and Superelastic Technologies Europe, Antwerp, 1999) p. 256.

  26. J. Van Humbeeck, Mater. Sci. Eng., A 273-275 (1999) p. 134.

    Google Scholar 

  27. L.McD. Schetky, Mater. Sci. Forum 327-328 (2000) p. 9.

    Google Scholar 

  28. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, 2nd ed., Vol. 3 (ASM International, Materials Park, OH, 1990) p. 2874.

    Google Scholar 

  29. T. Honma, T. Matsumoto, Y. Shugo, and M. Nishida, Research Report of the Laboratory of Nuclear Science, Tohoku University 12 (Tohoku University, Sendai, Japan, 1979) p. 183.

    CAS  Google Scholar 

  30. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Acta Metall. 33 (1985) p. 2049.

    CAS  Google Scholar 

  31. T. Hara, T. Ohba, E. Okunishi, and K. Otsuka, Mater. Trans., JIM 38 (1997) p. 11.

    CAS  Google Scholar 

  32. T. Saburi, K. Komatsu, S. Nenno, and Y. Watanabe, J. Less-Common Met. 118 (1986) p. 217.

    CAS  Google Scholar 

  33. T.Y. Nam, T. Saburi, and K. Shimizu, Trans. JIM 31 (1990) p. 959.

    Google Scholar 

  34. T. Tadaki, Y. Nakata, K. Shimizu, and K. Otsuka, Mater. Trans., JIM 27 (1986) p. 731.

    CAS  Google Scholar 

  35. T. Saburi, S. Nenno, and T. Fukuda, J. Less-Common Met. 125 (1986) p. 157.

    CAS  Google Scholar 

  36. T. Hara, T. Ohba, and K. Otsuka, Mater. Trans., JIM 38 (1997) p. 277.

    CAS  Google Scholar 

  37. M. Nishida, C.M. Wayman, and T. Honma, Metall. Trans. A 17A (1986) p. 1505.

    CAS  Google Scholar 

  38. H. Horikawa, H. Tamura, Y. Okamoto, H. Hamanaka, and F. Miura, in Proc. Int. Meet. Adv. Mater., Vol. 9, edited by K. Otsuka and K. Shimizu (Materials Research Society, Pittsburgh, PA, 1989) p. 195.

    Google Scholar 

  39. J. Zhang, PhD thesis, University of Tsukuba, 2000.

    Google Scholar 

  40. M.S. Wechsler, D.S. Lieberman, and T.A. Read, Trans. AIME 197 (1953) p. 1503

    Google Scholar 

  41. J.S. Bowles and J.K. Mackenzie, Acta Metall. 2 (1954) pp. 129, 138, 224.

    CAS  Google Scholar 

  42. J.W. Christian, J. Inst. Met. 84 (1955-1956) p. 386.

    Google Scholar 

  43. K. Otsuka, Mater. Sci. Forum 56-58 (1990) p. 393.

    CAS  Google Scholar 

  44. N. Nakanishi, Prog. Mater. Sci. 24 (1979) p. 143.

    CAS  Google Scholar 

  45. A. Planes and L. Manosa, Solid-State Phys. 55 (2001) p. 159.

    CAS  Google Scholar 

  46. S.M. Shapiro, J.Z. Larse, Y. Noda, S.C. Moss, and L.E. Tanner, Phys. Rev. Lett. 57 (1986) p. 3199.

    CAS  Google Scholar 

  47. C. Zener, Phys. Rev. 71 (1947) p. 846.

    CAS  Google Scholar 

  48. X. Ren and K. Otsuka, Scripta Mater. 38 (1998) p. 1669.

    CAS  Google Scholar 

  49. L.E. Tanner, D. Schryvers, and S.M. Shapiro, Mater. Sci. Eng., A A127 (1990) p. 205.

    CAS  Google Scholar 

  50. P.A. Lindgard and O.G. Mouritsen, Phys. Rev. Lett. 57 (1986) p. 2458.

    Google Scholar 

  51. J.A. Krumhansl, Solid State Commun. 84 (1992) p. 251.

    CAS  Google Scholar 

  52. G.R. Barsch, Mater. Sci. Forum 327-328 (2000) p. 367.

    CAS  Google Scholar 

  53. T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, and M. Date, Mater. Trans., JIM 34 (1993) p. 423.

    Google Scholar 

  54. T. Kakeshita, T. Saburi, and K. Shimizu, Mater. Sci. Eng., A 273-275 (1999) p. 21.

    Google Scholar 

  55. H. Abe, K. Ohshima, T. Suzuki, S. Hoshino, and K. Kakurai, Phys. Rev. B 49 (1994) p. 3739.

    CAS  Google Scholar 

  56. K. Otsuka, X. Ren, and T. Takeda, Scripta Mater. 45 (2001) p. 145.

    CAS  Google Scholar 

  57. A.G. Khachaturyan and G.A. Shatalov, Sov. Phys. JETP 29 (1969) p. 557.

    Google Scholar 

  58. Y. Wang and A.G. Khachaturyan, Acta Mater. 45 (1997) p. 759.

    CAS  Google Scholar 

  59. Y.M. Jin, A. Artemev, and A.G. Khachaturyan, Acta Mater. 49 (2001) p. 2309.

    CAS  Google Scholar 

  60. T. Suzuki, M. Shimono, and S. Takeno, Phys. Rev. Lett. 82 (1999) p. 1474.

    CAS  Google Scholar 

  61. G.L. Zhao and B.N. Harmon, Phys. Rev. B 48 (1993) p. 2031.

    CAS  Google Scholar 

  62. Y.Y. Ye, C.T. Chan, and K.M. Ho, Phys. Rev. B 56 (1997) p. 3678.

    CAS  Google Scholar 

  63. T. Ohba, Y. Emura, and K. Otsuka, Mater. Trans., JIM 33 (1992) p. 29.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsuka, K., Kakeshita, T. Science and Technology of Shape-Memory Alloys: New Developments. MRS Bulletin 27, 91–100 (2002). https://doi.org/10.1557/mrs2002.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.43

Keywords

Navigation